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Abstract—This paper attends to the well-known problem of
compressing the Forwarding Information Base of a router or
switch, while preserving a correct forwarding. In contrast to
related work, we study an online variant of the problem where
BGP routes can change over time, and where the number of
updates to the FIB are taken into account explicitly. Minimizing
the number of FIB updates is important, especially when they
are sent across the network (e.g., from the network-attached
SDN controller).

This paper pursues a competitive analysis approach and
introduces a formal model which is an interesting generaliza-
tion of several classic online aggregation problems. The main
contribution is a O(w)-competitive algorithm, where w is the
length of an IP address. We also derive a lower bound which
shows that our result is asymptotically optimal within a natural
class of algorithms.

Keywords-Networking, Prefix Aggregation, Competitive
Analysis, Ski Rental

I. INTRODUCTION

At the heart of any Internet router lies a so-called For-
warding Information Base (FIB) containing the router’s
forwarding rules. A routing decision for a given packet is
made on the basis of these rules and the destination IP
address of a packet. A fast rule lookup requires the FIB to be
stored in a fast (and expensive) memory on the line cards.
Nowadays, the number of these rules at the Internet core
routers is growing at an alarming rate. New forwarding rules
emerge primarily because of the growth of the Internet itself,
trends for advertising more specific routes, or the increasing
demand for virtual networks [4], [12]. The migration to IPv6
is not expected to mitigate the address space disaggregation
problem [5]. The increasing memory requirement comes at
a significant cost for ISPs, as this memory is expensive and
power-hungry.

A natural and local solution to mitigate the problem —
before possible long-term solutions are deployed — is the
aggregation/compression of the FIB, i.e., the replacement of
the existing set of rules by an equivalent but smaller set. The
aggregation of FIB rules has the appealing property that it
is a purely local solution in the sense that it does not affect
neighboring routers and it can be done by a simple software
update [21].

While the compression of the FIB is beneficial in terms
of memory, it also entails a potential overhead: As the

FIB of a router changes dynamically over time — typically
several thousands rules are modified each second [7] — the
rule compression may lead to a situation where already
aggregated FIB entries need to be disaggregated again,
resulting in a larger number of rule updates. There is
a certain cost associated with each such update. For example,
the route processor (or, in the context of Software-Defined
Networks (SDN): the SDN controller [14]), may need to
send updates to the memory on the line card (or to the
OpenFlow switch [14]); such additional transmissions of
control messages is problematic as the communication chan-
nel between route processor and line card (resp. between
the controller and the switch) can become a bottleneck [15].
Moreover, upon each update, the internal FIB structures have
to be rebuilt.

In this paper, we present and analyze FIB aggregation
algorithms which simultaneously try to maximize the com-
pression ratio and minimize the number of updates to the
compressed FIB.

A. The Model
An (IP) address is a binary string of length w (e.g., w =

32 for IPv4 and w = 128 for IPv6) or equivalently an integer
from [0, 2w−1]. An (IP) prefix is a binary string of length at
most w; we denote the empty prefix by ε. A prefix contains
all addresses that start with it, i.e., it corresponds to a range
of addresses of the form [k ·2i, (k+1) ·2i−1], where w− i
is the prefix length and k ≥ 0 is an integer.

Forwarding Information Base (FIB). We consider a
packet forwarding router with a set of ports (also known
as the next-hops). A Forwarding Information Base (FIB)
is a set of forwarding rules used by the router; each rule
is a (prefix,port) pair (p, c). For the presentation, we will
refer to the ports by colors, i.e., assume a unique color for
each port. For any packet processed by the router, a decision
is made on the basis of its destination IP address x using
the longest prefix match policy [15]: among the FIB rules
{(pi, ci)}i, the router chooses the longest pi being a prefix
of x, and forwards the packet to port ci. (We assume that
there are no two rules with the same prefixes and different
ports.) If no rule matches, the packet is dropped.

For instance, consider a FIB containing four rules {(ε, a),
(00, b), (1, c), (11, a)}, where a, b, and c are ports. It could



be replaced by an equivalent FIB containing the rules
{(ε, a), (00, b), (10, c)}. In this compression process, we
require strong forwarding correctness [21], i.e., we require
that the forwarding and dropping behavior remain the same.

Finally, we call two (different) rules dependent if the
ranges represented by them overlap (i.e., one of these ranges
is contained in the other) and independent otherwise.

Costs and Competitive Analysis. In our simplified set-
ting, the router contains two parts: the controller (typically
implemented on the route processor) and the (compressed)
FIB (stored in a fast and expensive memory), cf. Figure 1.
The controller keeps a copy of the uncompressed FIB (U-
FIB) and receives dynamic updates to this structure (e.g.,
due to various events from the Border Gateway Protocol,
BGP). More precisely, we assume continuous time; at any
time t, a single forwarding rule may change its color (port).
In particular, we do not allow new rules to be inserted to
U-FIB nor old rules to be deleted from it. Thus, the input is
a sequence of such color changes called events. Right after
a change occurs, the controller must ensure that the U-FIB
and the FIB are equivalent. To this end, the controller may
insert, delete or update (change color) individual rules in
the FIB. The controller can also issue these commands at
any point of time (e.g., for a delayed compression of the
FIB). We associate a fixed cost α to any such change of
a single rule. (We emphasize that α is a fixed parameter but
not necessarily a constant.)

Note that we use a fixed parameter α independently of
the change type issued by the controller (insert, delete, color
update) to keep the model general: α is not specific for any
particular FIB data structure (e.g., trie or cache), but may
also model the cost of transmitting a control packet between
an SDN controller and the OpenFlow switch. (See also [10],
[18].) We will refer to the total cost paid this way as update
cost, and the amount paid by an algorithm ALG in a time
interval I is denoted by U-COSTI(ALG). More generally,
we ignore IP lookup costs in our model, as they depend on
the data structure and are often negligible in practice [15,
chapter 15].

The second type of cost we want to optimize is the size of
the FIB, which — following [6] — is defined as the number
of FIB forwarding rules. This modeling is justified by state-
of-the-art approaches (see, e.g., [15, chapter 15]), where the
size of such a structure is usually proportional to the number
of entries in the FIB. For an algorithm ALG and time t, we
denote the number of FIB rules at time t by SIZEt(ALG).
The total memory cost in a time interval I is then defined
as M-COSTI(ALG) =

∫
I

SIZEt(ALG) dt.
In both objective functions (U-COST and M-COST), we

drop time interval subscripts when referring to the total cost
during the runtime of an algorithm. This paper focuses on
minimizing the sum of these two costs, i.e., COST(ALG) =
U-COST(ALG) + M-COST(ALG). Note that the parameter

Controller

FIB

(U-FIB)
uncompressed FIB

(compressed)

insert
delete
update

INPUT
(changes to U-FIB)

p
ac
ke
ts

Figure 1. Controller and FIB: the controller updates the rules in the FIB.
This paper focuses on online algorithms for the controller.

α can be used to put more emphasis on either of the two
costs.

We assume a conservative standpoint and study algorithms
that do not have any knowledge of future prefix changes, and
need to decide online on where and when to aggregate. Not
relying on predictions seems to be a reasonable assumption
considering the chaotic behavior of the route updates in
the modern Internet [9]. We use the standard yard-stick of
online analysis [3], i.e., we compare the cost of the online
algorithm to the cost of an optimal offline algorithm OPT
which knows the whole input sequence in advance. We
call an online algorithm ALG ρ-competitive if there exists
a constant γ, such that for any input sequence it holds that
COST(ALG) ≤ ρ · COST(OPT) + γ. The competitive ratio
of an algorithm is the infimum over all possible ρ, such that
the algorithm is ρ-competitive.

A Note about IP Lookup. In our modeling, we do not
take into account the impact a FIB compression may have
on IP lookup times, because they are affected only to a very
limited extent. The state-of-the-art data structures used for
IP lookup (see, [15, chapter 15] and the references therein)
use a large variety of tree-like constructs augmented with
additional information. This allows for lookup times of order
O(logw), with practical implementations using 2-3 memory
lookups on average. Unfortunately, little is known about
proprietary data structures actually used in the routers of
different vendors.

B. Related Work

There are known fast algorithms for optimal FIB aggre-
gation of table snapshots, for example the Optimal Routing
Table Constructor (ORTC) [6] and others [16], [19]. How-
ever, as these algorithms are static and do not support the
efficient handling of incremental updates, a re-computation
of the optimally aggregated FIB on each forwarding rule
change is needed. This is computationally expensive and
can lead to high churn.

There are several papers that deal with this problem by
proposing heuristics that simultaneously try to limit the
number of updates to the FIB while maintaining a good
compression rate, including SMALTA [20], FIFA [10], and
others [8], [11], [13], [21]. Moreover, some authors even pro-
posed to only store a subset of rules in the FIB, leveraging
Zipf’s law [18]. However, none of these works give a formal
bound on the achievable performance over time neither with
respect to the number of updates to the aggregated FIB, nor
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Figure 2. Left: Benefit of aggregation for four different AS: The ratio of
aggregated FIB size divided by original FIB size is typically around 40%
only. Right: Routing updates per second over a week.

to the aggregation gain. They also do not consider to exploit
the (temporal and spatial) locality of churn for their benefit.

The paper closest to ours is [2]. The authors study online
algorithms for FIB compression under the assumption of
independent prefixes (both in U-FIB and in FIB). Without
prefix dependencies, the nature of the problem is more re-
lated to online ski rental and technically different: achieving
a constant competitive ratio is simple, but what the optimal
constant is remains an open question. The authors present
a 3.603-competitive solution.

C. Our Contribution

This paper presents the first formal study of the tradeoff
between FIB compression and update churn under depen-
dent prefixes. In particular, we present the online algorithm
HIMS (HIDE INVISIBLE AND MERGE SIBLING), which is
based on the concept of sticks. Sticks capture the subset of
prefixes that are subject to optimization without violating
forwarding correctness. HIMS (1) removes unnecessary and
“invisible” prefixes from the FIB, and (2) merges FIB
prefixes that are forwarded to the same port and describe
adjacent IP address spaces.

We rigorously prove that HIMS achieves a competitive
ratio of O(w); the performance is hence independent of
the update cost α (which need not to be a constant).
Furthermore, we derive a tight lower bound of Ω(w) on the
competitive (resp. approximation) ratio of a natural class of
online (resp. offline) algorithms.

D. Empirical Motivation

To motivate the churn-aware compression of router for-
warding tables, we gathered some empirical data. Precisely
speaking, we have collected snapshots of the FIBs of seven

different Autonomous Systems (AS) peering at a large Euro-
pean IXP (Internet Exchange Point). Figure 2 (left) shows
the potential of aggregation: the ratio between the aggregated
FIB size and the original FIB size. (In order to compute the
optimally aggregated FIBs, i.e., the FIBs of minimal size
with equivalent forwarding, we used the ORTC [6] dynamic
programming algorithm.) The gain is typically larger than
a factor of two, even for routers with a large number of
ports (i.e., colors). This benefit is mostly due to the specific
prefix distribution (over the ports) in the Internet; if the
ports for an actual routing table were chosen randomly, the
compression factor would be much worse.

At the same time, routers also have to deal with a high
degree of update churn [7]. Our analysis of public traces
from the RouteViews project [1] shows that there are very
frequent routing events that cause more than a thousand
routing table updates per second. Figure 2 (right) depicts
the number of updates per second at two routers, one of an
ISP in Canada and of an ISP in the USA.

For more empirical data as well as an evaluation of various
heuristics under update streams, we refer the reader to the
technical report [17].

II. BASIC CONCEPTS

In this section, we introduce the basic aggregation con-
cepts and terminology on which our algorithm HIMS is
based, such as superfluous nodes and sticks.

Trie Representation. Throughout this paper, we represent
both the U-FIB and the FIB as one-bit tries containing all
the prefixes from the forwarding rules. This affects merely
the description: we do not assume anything about the actual
implementation of the U-FIB/FIB structures. Each node of
the tree (corresponding to some prefix p) has an associated
color c if there is a forwarding rule (p, c); a node without
any associated color is called blank. We identify nodes with
the prefixes they represent and furthermore with the address
ranges their prefix implies. In particular, we call two nodes
adjacent if the address ranges they cover are adjacent.

We call a node v a U-FIB (FIB) rule if it is colored in
the U-FIB (in the FIB). For any node v (also a blank one),
we denote its least colored ancestor (the ancestor farthest
from the root) in the U-FIB and in the FIB by lcaU(v) and
lcaF(v), respectively.

We assume that each non-leaf node has exactly two
children. A non-root node we call left (right) if it is a left
(respectively right) son of its parent. For U-FIB, we assume
minimal tries, that is, tries without blank sibling leaves (they
may contain blank leaves, though). In the trie representation
of the FIB, minimality is not assumed.

Color Determination and Superfluous Nodes. Observe
that the coloring of the U-FIB (FIB) implies the coloring
of the whole address space [0, 2w−1]: each address has the
color of the prefix that would be applied as a forwarding rule.



We say that such a node v determines the color of address j
in the U-FIB (FIB). Unlike in the U-FIB, the node that
determines the color of a given address in the FIB may
change with time. For succinctness of the description, we
slightly extend the address space, incorporating two blank
addresses −1 and 2w.

We call a U-FIB rule that does not determine the color of
any address superfluous. As the color changes of superfluous
nodes can be ignored, w.l.o.g., we may assume that the
U-FIB does not contain any such nodes: they could be
removed from the FIB by an algorithm at the very beginning
and at constant cost. We hence have the following property.

Observation II.1. Any input event (i.e., a color change)
changes the coloring of the address space, and hence any
algorithm has to react by modifying the FIB and paying at
least α.

The necessity of dependencies in the FIB. To illustrate our
definitions, we now explain why keeping dependent prefixes
in the FIB is crucial for obtaining a good competitive ratio.
It would be tempting to consider a simple online algorithm
that just observes the coloring of the address space induced
by the current U-FIB rules and tries to reflect that state using
only independent prefixes in the FIB. It appears that no such
algorithm can achieve a non-trivial competitive ratio.

Lemma II.2. Let ALG be a (possibly offline) algorithm that
never keeps any dependent prefixes in its FIB. Then, there
exists an input sequence, for which COST(ALG) = Ω(2w) ·
COST(OPT).

Proof: Consider a U-FIB that is represented by a full
binary tree of height w, with root colored initially green and
each second leaf colored black. All other nodes are blank.
Now the input sequence contains changes of the root color
from green to red and back to green. By simply copying the
state of the U-FIB to its FIB, OPT pays α for each change
to the U-FIB. On the other hand, each change of the U-FIB
induces Ω(2w) changes to the coloring of the address space.
To reflect these changes in its FIB, each time ALG has to pay
Ω(2w) ·α. Hence, U-COST(ALG) = Ω(2w) ·U-COST(OPT).
This relation directly implies the desired bound as by
frequently changing the U-FIB, the adversary renders the
memory costs negligible.

Sticks and Active Nodes. After removing superfluous
nodes, we decompose the U-FIB into multiple groups called
sticks. This decomposition remains invariant throughout the
runtime of the algorithm. Informally speaking, each stick
is a maximal subtree (where leaves of this subtree may
be U-FIB internal nodes), such that all subtree leaves are
colored and all its internal nodes are blank, cf. Figure 3.

To this end, we first group all rules of the U-FIB into sets
L1, L2, L3, . . .. Each Li is a maximal (w.r.t. to cardinality)
set of colored nodes corresponding to adjacent address

U-FIB:

Figure 3. Partition of the U-FIB into sticks. Superfluous nodes are already
removed. Stick boundaries are marked with dashed lines.

ranges whose union is a range that can be represented by
a single node vi. In other words, if all these nodes were of
the same color c, they could be compressed to a single node
vi of color c. Note that this partitioning does not depend on
the order in which we gather nodes into sets Li.

A stick Si is then defined to contain all nodes “between
vi and Li inclusively”: all nodes in the tree rooted at vi
that are either in Li or are ancestors of Li. Li, Si \ Li,
and vi are called the leaves, the internal nodes and the root
of stick Si, respectively. Note that the stick leaves are not
necessarily tree leaves. When Li is a singleton, Si is also
a singleton and is called a trivial stick. As U-FIB does
not contain superfluous nodes, all sticks are disjoint and all
internal nodes of a stick are blank in the U-FIB. We call
nodes that belong to any stick active.

III. AGGREGATION ALGORITHM HIMS

Our algorithm tries to merge nodes of the same color
within a single stick. That is, if all the leaves of a single
non-trivial stick have the same color (in the U-FIB) for
some period of time, then in the FIB they should become
blank and the root of the stick should have that color
assigned. Furthermore, we should perform also partial intra-
stick optimizations when possible (e.g., if some adjacent
nodes of a single stick are of the same color and can be
replaced by a single colored node). However, optimizing the
sticks alone may still yield a poor performance. Consider,
for example, a U-FIB containing a non-superfluous red root
(being a trivial stick) and many non-adjacent red leaves, all
being trivial sticks. In this example, the red nodes below
the root are “invisible”, i.e., they could be deleted without
changing the meaning of the forwarding table. The optimally
compressed FIB contains only the root.

Counters. For our algorithm, we define, for any active
node, two counters that are functions of time and depend
on the coloring of the U-FIB. Fix any (active) node u
belonging to some stick S. If u is a leaf of S, then let
L(u) = {u}, otherwise let L(u) contain all leaves of S
that are descendants of u. Furthermore, if u is not a root of
a stick, p(u) denotes its parent in the trie, otherwise p(u) is
undefined.

1) For any node u, the counter Cu(t) measures how long,
until time t (uninterruptedly), all nodes of L(u) have



the same color. Hence, for a stick leaf u, Cu(t) simply
measures the time since the last change of u’s color.

2) The second counter is used to hide invisible nodes. As-
sume that lcaU(u) exists. The counter Hu(t) measures
how long, until time t (uninterruptedly), all nodes of
L(u)∪ {lcaU(u)} have the same color. When lcaU(u)
does not exist, Hu(t) = 0 for any time t.

Since multiple nodes cannot change colors simultaneously,
any color change of a stick leaf u causes the resetting of the
C and H counters on the path from u to the root of a stick
containing u. Similarly, the color change of lcaU(u) resets
all H counters from the stick containing u. Note also that
Cu(t) ≥ Hu(t) and, if p(u) is defined, Cp(u)(t) ≤ Cu(t)
and Hp(u)(t) ≤ Hu(t).

Algorithm Definition. We are now ready to present our
algorithm HIMS (HIDE INVISIBLE AND MERGE SIBLING).
In the FIB of HIMS, the inactive nodes are always blank.
For any active node u, HIMS decides whether it should be
colored and, if so, with which color.

An active node u is a FIB rule at time t if and only if
all the following three conditions hold:

1) Hu(t) < α,
2) Cu(t) ≥ α or u is a stick leaf,
3) Cp(u)(t) < α or u is a stick root.

If u is decided to be FIB rule, then its color is the
color of the nodes in L(u). Note that this color is well
defined (either u is a leaf and then L(u) is a singleton,
or Cu(t) > 0).

Example HIMS Execution. To get some understanding of
the behavior of HIMS, let us take a look at two extreme
cases. For a trivial stick consisting of a single node u, the
second and the third condition always hold as u is both
a stick leaf and a stick root. Therefore, the algorithm simply
waits till Hu(t) reaches α and then removes (the invisible)
u from the FIB. On the other hand, for a stick S that has no
colored ancestors in the U-FIB, Hu(t) = 0 for any u ∈ S.
Thus, the actions of HIMS on S depend only on the C
counters inside S. For example, if all the stick leaves in
the U-FIB are unicolor for time α, then only the root of S
remains present in the FIB of HIMS.

IV. ANALYSIS OF HIMS

We start by presenting the framework of our analysis,
while most of the technical details are given in the subse-
quent sections. To explain the rationale behind bounding the
memory cost of HIMS, let us consider a special adversarial
strategy: given the state of the U-FIB at time t, the adversary
does not change anything for a certain time period. Then,
in the time interval (t, t + α], HIMS may perform some
optimizations, but after time t+α, HIMS will not introduce
any further changes to the FIB. Furthermore, it is possible

to show that at time t+ α, the size of the algorithm’s FIB
is an O(w)-approximation of the optimal FIB size.

Clearly, we cannot expect the adversary to behave as
described above, as it has many more options. Nevertheless,
we can show that if we take the U-FIB and FIB snapshots
at any particular time t, then either some compressions were
already performed by HIMS or the changes to the U-FIB are
quite recent, i.e., they occurred in time interval (t−α, t]. In
either case, we are able to construct a lower bound on OPT’s
cost, and hence relate M-COST(HIMS) to COST(OPT).

For a formal proof, we introduce a concept of rainbow
points. A rainbow point is an address-time pair (a, t),
denoting that at time t address a ∈ [−1, 2w − 1] has
a different color than address a+ 1 (where blank is treated
as an additional color). We call two rainbow points different
if their addresses are different. Rainbow points measure the
spatial-temporal complexity of the coloring of the address
space: even OPT has to represent this coloring by its
own FIB.

Lemma IV.1. If there are k pairwise different rain-
bow points in some time interval I of length α, then
COSTI(OPT) ≥ dk/2e · α.

Proof: A rainbow point (a, t) is a witness for a rule
that had to be present at time t in the OPT’s FIB and whose
range either ended with address a (at the right) or a + 1
(at the left). Therefore, k different rainbow points are the
witnesses of at least dk/2e distinct rules that were present
in the FIB at some times from I . Any such rule was either
present in the FIB throughout the whole interval I or it was
inserted or deleted at some time of I . In either case, such
a rule contributes α to COSTI(OPT).

It remains to show how to find sufficiently many rainbow
points: We just need to consider the snapshots of HIMS’s
FIB at certain times. Precisely speaking, in Section IV-A,
we will show the following result.

Lemma IV.2. Fix any time t at which the FIB of HIMS
does not change. There are Ω(SIZEt(HIMS)/w) pairwise
different rainbow points in the interval (t− α, t].

Finally, we need to bound the number of updates HIMS
performs in the FIB. Using a potential function argument,
we charge each FIB update either to a change of the U-FIB
or to a time period of length at least α this rule spent in the
FIB. By assuring that no U-FIB update is charged more
than O(w) times, we obtain the following result (proven
formally in Section IV-B).

Lemma IV.3. For any input sequence with m color changes,
U-COST(HIMS) = O(M-COST(HIMS)) + O(w) ·m · α +
O(α) · SIZE(U-FIB).

Theorem IV.4. HIMS is O(w)-competitive.

Proof: First, we bound M-COST(HIMS). We partition



the entire runtime of the algorithm into disjoint intervals
I1, I2, . . . , I` of length α. At any such interval Ij , we
identify a time tj ∈ Ij at which there is no change in the
FIB and the size of the FIB of HIMS is the greatest; let
kj = SIZEtj (HIMS). Clearly, M-COSTIj (HIMS) ≤ kj · α.

For any j ≥ 2, let rj = (tj − α, tj ]. The number of
rainbow points in interval rj is Ω(kj/w) by Lemma IV.2,
and thus, by Lemma IV.1, COSTrj (OPT) = Ω(kj · α/w).
The intervals rj may overlap, however any time belongs to
at most two such intervals (as the distance between every
second tj is at least α). Thus,

∑`
j=2 M-COSTIj (HIMS) ≤∑`

j=2 kj · α = O(w) ·
∑`

j=2 COSTrj (OPT) = O(w) ·
1
2 · COST(OPT). Finally, the memory cost in the first in-
terval is at most k1 · α ≤ α · SIZE(U-FIB), and hence
M-COST(HIMS) = O(w) ·COST(OPT) +α · SIZE(U-FIB).

Now by Lemma IV.3 and Observation II.1,
U-COST(HIMS) = O(M-COST(HIMS)) + O(w) ·
COST(OPT) + O(α) · SIZE(U-FIB). Thus, in total,
COST(HIMS) = M-COST(HIMS) + U-COST(HIMS) =
O(w) · COST(OPT) + O(α) · SIZE(U-FIB). As the term
O(α) · SIZE(U-FIB) is a constant independent of the input
sequence, HIMS is O(w)-competitive.

A. Finding Rainbow Points (Proof of Lemma IV.2)

We start with some basic properties of the algorithm
HIMS. We call a node u that satisfies the second and the
third condition given in the description of HIMS a (FIB)
semi-rule. If a semi-rule u satisfies also the first condition,
it is clearly a FIB rule, otherwise we call it (FIB) hidden
rule.

Claim IV.5. Fix any stick S. For any stick leaf u, let Au

contain all the nodes on the path from u to the stick root. At
any time t, Au contains exactly one semi-rule. If Hu(t) < α,
then Au contains exactly one FIB rule.

Proof: Consider the sequence u1 = u, u2, . . . , us of all
nodes of Au sorted from the leaf u of S to the root of S. The
first part of the lemma follows in a straightforward manner
by observing that the values of Cui

(t) are non-increasing
with i. As the Hui

(t) values are also non-increasing with i,
Hu(t) < α implies that Hui

(t) < α for any i, and therefore
the only semi-rule in Au is in fact a rule.

Claim IV.6. Fix time t. Fix a stick leaf node u that changes
color in the U-FIB at time t′ ∈ (t − α, t). Fix an address
a contained in the range of u. If at time t, in the FIB of
HIMS, the color of a is determined by u or its ancestor,
then in the U-FIB the color of a is determined by u.

Proof: For the sake of contradiction, assume that in
the U-FIB there exist descendants u1, u2, . . . , us of u
containing a. Let S1 be the stick containing u1; clearly, u
belongs to a different stick than S1. As u changes color at t′,
Hu1

(t′) = 0, and therefore Hu1
(t) ≤ t − t′ < α. Then, by

Claim IV.5, either u1 or one of its ancestors from S1 is

present as a colored node in the FIB. As such a node lies
below u in the FIB trie, neither u nor any of its ancestors
can determine the color of a in the FIB at time t.

Relating pairs of FIB rules to rainbow points. The
following lemma captures the core properties of the opti-
mizations performed by HIMS, essentially stating that if at
some time the FIB contains two “neighboring” nodes, then
either they cannot be aggregated by HIMS at all, or it was
not possible to aggregate them in the nearest past. In either
case, we provide a witness (a rainbow point).

Lemma IV.7. Fix any time t at which the FIB of HIMS
does not change and an address a. Assume that at time t
the colors of a and a+ 1 are determined in the FIB by two
distinct rules u and v, respectively. Assume that one of the
following three cases occurs: (i) u and v are siblings; (ii) u
is a left node and v is its ancestor; (iii) v is a right node and
u is its ancestor. Then, there exists a rainbow point (a, t′),
for some t′ ∈ (t− α, t].

Proof: We assume that addresses a and a+ 1 have the
same color c at time t, as otherwise they would immediately
constitute the rainbow point (a, t). We consider the three
cases listed in the lemma assumptions and show that in either
case U-FIB contains a stick leaf x that changes color at
a time tc ∈ (t− α, t), such that x is either u, or v, or their
descendant, and contains either a or a+ 1 (but not both).

1) If u and v are siblings, then — by the way we
defined sticks — they belong to the same stick. This
implies that their parent p also belongs to the same
stick. Hence, by the definition of HIMS, Cp(t) <
α. This means that (i) at time t, all nodes from
L(p) = L(u) ∪ L(v) are of the same color c, (ii)
at time tc = t − Cp(t) one of these nodes changed
its color from c′; let x be this node. Without loss of
generality, assume that x ∈ L(u). This implies that
Cu(t) = Cp(t) < α. As u is a FIB rule at time t,
u has to be a stick leaf and hence x = u.

2) If v is an ancestor of u, then by Claim IV.5, they
belong to different sticks. Let v′ = lcaU(u). Node v′

is either equal to v or is its descendant. Note that v′ is
a stick leaf. As u is a left node, v′ contains the address
a + 1. As u is a FIB rule at time t, Hu(t) < α, i.e.,
there is a node x ∈ L(u)∪ {v′} that changed color at
time tc = t −Hu(t) ∈ (t − α, t). It remains to show
that x fulfills our requirements. It is clearly the case
when L(u) = {u}, because then x can be then either
v′ or u. Assume now that L(u) is not a singleton set,
i.e., u is not a stick leaf. As u is a FIB rule at time t,
Cu(t) ≥ α, which implies that no node from L(u)
changed the color during the time interval (t − α, t).
Thus, in this case x = v′.

3) If u is an ancestor of v, the argument is symmetric to
the previous case.



By Claim IV.6, x determines the color either of a or a+1
in the U-FIB. Without loss of generality, assume that it
determines the color of a and that at time tc > t − α it
changes color from c′ to c. This means that there exists a
sufficiently small ε > 0, such that (tc−ε, tc +ε) ⊂ (t−α, t)
where a has color c′ in time interval (tc − ε, tc) and color
c in (tc, tc + ε). As the color of a + 1 is not determined
by node x and there are no simultaneous changes of colors,
there is a time t′ ∈ (tc−ε, t+ε) ⊂ (t−α, t) when addresses a
and a+1 have different colors: (a, t′) is our desired rainbow
point.

Relating global FIB state to rainbow points. To show
Lemma IV.2, we fix time t and perform the following
grouping of the leaves of the FIB of HIMS. We sweep
the leaves from left to right, partitioning them into groups
G1, G2, G3, . . . In the grouping process, we put two consec-
utive leaves u, v (possibly representing non-adjacent address
ranges) into the same group Gi when either (i) both u and v
are left nodes and v is a descendant of the right sibling of u,
or (ii) both u and v are right nodes and u is a descendant
of the left sibling of v. In the former case, we call a group
left, in the latter — right. (Note that a group can consist of
a single leaf only if the orientation of leaves change, but can
also have up to w many members.)

Claim IV.8. If there are h groups of leaves in the FIB, then
the number of all FIB rules is O(h · w).

Proof: For any group Gi, we denote by Ki the set of all
leaves of Gi plus the union of their (not necessarily colored)
ancestors. As each FIB rule is in at least one set Ki, it is
sufficient to show that the number of elements of any set Ki

is at most O(w). Recall that, by the definition of Gi, Ki has
at most one leaf on each level; let ` be the maximal such
level. It suffices to show that there is exactly one ancestor
on each of the levels 0, 1, . . . , ` − 1. Such a claim follows
by a simple backward induction on the levels. Level ` − 1
contains exactly one ancestor being the parent of the `-th
level leaf of Ki. Now fix level j < ` − 1. Note that level
j+1 contains a single ancestor (by the inductive assumption)
and possibly a leaf, and these nodes are siblings (by the
construction of the groups). Hence these nodes of Ki have
a single parent at level j, which concludes the proof of the
claim.

We are now ready to prove Lemma IV.2, i.e., the relation
between the number of FIB entries at time t and the number
of different rainbow points in the interval (t− α, t].

Proof of Lemma IV.2: Let I = (t−α, t]. We group all
the leaves as described above into h groups G1, G2, . . . , Gh.
For any group Gi, we denote the leftmost address covered
by a leaf from Gi by ai and its rightmost one by bi. By
Claim IV.8, it is sufficient to show that the number of
rainbow points is Ω(h). If h < 4, then we simply consider
the last colored address, bh: as bh + 1 is blank, (bh, t) is

a rainbow point and the lemma follows.
In the following, we thus assume that h ≥ 4. We focus

on a consecutive pair of groups Gi and Gi+1, such that at
least one of the conditions hold: (i) Gi is a left group, (ii)
Gi+1 is a right group. Note that among all h − 1 pairs of
consecutive groups, at least every second pair (i.e., at least
(h− 2)/2 = Ω(h) pairs) has this property. Thus, it remains
to show that for such a pair of groups, we may find a unique
rainbow point in I .

We denote the rightmost leaf of Gi by vi and the leftmost
leaf of Gi+1 by vi+1. Without loss of generality, we can
assume that Gi is a left group, which means that vi is a left
node. (The case when Gi+1 is a right group is symmetric,
i.e., we start our construction with vi+1 and we reverse
the roles of left and right nodes). If bi + 1 is blank, then
(bi, t) is our rainbow point; otherwise let ui be the node
that determines the color of the address bi + 1. We consider
three cases depending on the relation between the levels
(i.e., depth in the trie) of ui and vi, henceforth referred to
by lev(ui) and lev(vi), respectively.

1) lev(ui) < lev(vi). As vi is a left node, the address
ranges of vi and ui cannot be adjacent, and therefore
ui is an ancestor of vi. By Lemma IV.7, there exists
a rainbow point (bi, ti), where ti ∈ I .

2) lev(ui) = lev(vi). Then, ui is the right sibling of vi.
By Lemma IV.7, there exists a rainbow point (bi, ti),
where ti ∈ I .

3) lev(ui) > lev(vi). Then, ui is a left node, whose
leftmost address is bi+1. Note that ui cannot be a FIB
leaf as then it would belong to Gi. Furthermore, vi+1

is the leftmost leaf of the subtree rooted at ui, i.e.,
lev(vi+1) > lev(ui) > lev(vi). This implies that vi+1

has to be a right node as otherwise it would belong
to Gi. Furthermore, vi+1 has an ancestor (node ui) in
the FIB. Let ui+1 = lcaF(vi+1) (it can be either ui or
some of its descendants). As vi+1 is a right node and
is the leftmost leaf of ui+1, node ui+1 determines the
color of ai+1−1. Hence, by Lemma IV.7, there exists
a rainbow point (ai+1 − 1, ti), where ti ∈ I .

B. Bounding the Update Cost (Proof of Lemma IV.3)
We bound the update cost over an input sequence using

amortized analysis. For any node u, we define its potential
at time t as

Fu(t) =


5α+ 2 ·min{Hu(t), α} if u is a FIB rule
6α if u is a FIB hidden rule
0 otherwise

Let the total potential at time t be defined as Φ(t) =∑
u Fu(t), where we sum over all (active) nodes from the

FIB trie.
In this section, we abuse the notation, and use

U-COST(HIMS) to denote the amortized cost of its updates,



defined as the actual cost plus the change in the potential.
We show how to bound this amount in all possible cases.

Lemma IV.9. For any time interval I = (t0, t1) with no
updates to the FIB, it holds that U-COSTI(HIMS) ≤ 2 ·
M-COSTI(HIMS).

Proof: There is no actual update cost. The increase of
the total potential is ∆Φ = Φ(t1)−Φ(t0) ≤ 2 · (t1− t0) · k,
where k is the number of FIB rules kept within I . Finally,
M-COSTI(HIMS) = (t1 − t0) · k, and thus the lemma
follows.

Now, we analyze the amortized update cost at any time t
when the FIB is updated by HIMS. Such update is caused
either by some counters reaching α or by a color change in
the U-FIB that resets some counters. For the analysis, we
assume that these events occur separately. Namely, we split
time t into three stages:

1) In the first stage, HIMS behaves as if there was no
U-FIB color update, and processes only the changes
caused by some H counters that reached α.

2) In the second stage, HIMS processes the changes
induced by some C counters that reached α.

3) In the third stage, HIMS processes a (single) event of
a color change in the U-FIB.

We bound U-COST(HIMS) in all stages separately (see
the three lemmas below). Note that it is possible that some
stages are missing, and furthermore, if more than one stage
is present, we possibly overestimate the cost of HIMS (for
example, we may charge it for inserting a rule because of
a change in C counters and then for its removal because of
the U-FIB color change, while in reality HIMS would do
nothing with this rule).

Lemma IV.10. First stage: Assume that some H counters
reach value α. Then, U-COST(HIMS) ≤ 0.

Proof: If a counter Hu of a node u reaches α then if
this node was a rule it becomes a hidden rule. (If it was
not a rule, its status remains unchanged.) HIMS removes
u from the FIB paying α and the change in the potential
is 6α − (5α + 2 · min{Hu, α}) = −α, i.e., the amortized
update cost associated with u is zero. The lemma follows
by summing the amortized cost over all affected nodes u.

Lemma IV.11. Second stage: Assume that some C counters
reach value α. Then, U-COST(HIMS) ≤ 0.

Proof: By the definition of HIMS, growing C counters
can only create a semi-rule that is an ancestor of a previously
existing semi-rules. Thus, if a new semi-rule u is created,
then ` ≥ 2 semi-rules (lying in the subtree rooted at u)
are removed. These actions costs at most (` + 1) · α (the
cost might be lower than (` + 1) · α, because there is no
actual cost involved in creating and removing hidden rules).

On the other hand, as potentials for semi-rules are always
between 5α and 7α, the change in the total potential is at
most 7α − ` · 5α. Therefore, the amortized cost is at most
(` + 1 + 7 − 5`) · α = (8 − 4`) · α ≤ 0. By applying this
reasoning to all newly created semi-rules, the proof follows.

Lemma IV.12. Third stage: If a node u changes its color
in the U-FIB, then U-COST(HIMS) = O(w · α).

Proof: By the stick definition, u is a stick leaf. Its color
change affects two group of nodes.

First, pick any node v, such that lcaU(v) = u. Nodes v
with this property are active nodes belonging to sticks that
are “immediately below” u, i.e., there are no sticks between
u and them. The H counter of any such node v is reset to
zero. If v was a hidden rule, then it becomes reinserted to
the FIB (as a FIB rule). Otherwise, v remains unchanged. In
the former case, the actual cost associated with v is α, while
the potential change is 5α + 2 · min{Hv, α} − 6α = −α.
Thus, in total, the amortized cost is zero.

Second, the change of color of u also causes all the
C and H counters on the path from u to the root of the
stick containing u (inclusively) to be reset to zero. By the
definition of HIMS, only the nodes on this path and their
children are affected, i.e., only those nodes may be inserted,
deleted and have their potential changed. As there are O(w)
such nodes and their change in the potential is at most 7α,
the total amortized cost is O(w · α).

Now we may combine the lemmas above to bound the
amortized cost of HIMS updates in the general case.

Proof of Lemma IV.3: Let m be the number of
color changes in the input. If we sum the guarantees of
Lemma IV.9 to Lemma IV.12, we obtain that the total
amortized cost is bounded by O(M-COST(HIMS)) +O(w ·
α · m). Finally, we observe that the initial potential is
5α · SIZE0(HIMS) = 5α · SIZE(U-FIB), which contributes
a constant O(α) · SIZE(U-FIB) to the total cost.

C. Lower Bound

We can show that Theorem IV.4 is the best we can hope
for, at least for the natural class a of so-called stick-based
algorithms: informally speaking, these algorithms do not
create dependent prefixes within a single stick. We will
derive an Ω(w) lower bound for such (online or offline!)
algorithms.

More formally, we consider the U-FIB without super-
fluous nodes (recall that without loss of generality, we
may assume that an algorithm removes them at the very
beginning). Then, we call an algorithm stick-based if (i) it
never keeps an inactive node (a node outside of a stick) in the
FIB, and (ii) for any two active nodes from a single stick that
are in a ancestor-descendant relation, it keeps at most one



of them in the FIB. Clearly, HIMS fulfills these properties
and is hence an instance of a stick-based algorithm.

Theorem IV.13. The competitive ratio of any stick-based
algorithm ALG (even an offline one) is Ω(w).

Proof: It is sufficient to consider a U-FIB
containing a single stick S with w + 1 leaves,
corresponding to adjacent address ranges of lengths
2w−1, 2w−2, 2w−3, . . . , 22, 21, 20, 20, i.e. each length except
for the last one occurs exactly once. The root of S
coincides with the root of the whole trie. The coloring
of S is constant: the first w leaves are always black and
the last one is red. In this case, ALG has to use at least
w + 1 entries in the FIB to represent such a U-FIB. On
the other hand, OPT could just keep two entries in the
FIB: the last red entry from U-FIB of length 20 and the
black root (of length 2w). Note that in the long run, the
initial update cost of OPT becomes negligible and thus
COST(ALG) ≥ M-COST(ALG) = Ω(w) · OPT.

V. IMPLEMENTING HIMS

In this section, we show that HIMS can be implemented
efficiently in the route processor. Our construction consists
of two stages. First, we show how to maintain a data
structure that at all times keeps the set of all semi-rules.
(Recall that a semi-rule is a rule which satisfies the second
and the third property given in the algorithm definition.)
Additionally, for each semi-rule u, we store its color (i.e., the
color of leaves of L(u).) Second, we show how to augment
this data structure, so that at any time we know which of
the semi-rules are rules and should be kept in the FIB.

Lemma V.1. It is possible to maintain the set of semi-
rules (in the route processor) using a data structure of size
O(SIZE(U-FIB)), so that any sequence of events to U-FIB
can be processed in time O(w) on average.

Proof: For maintaining the set of all semi-rules, we
need to track two types of events: (i) a U-FIB color change
may force some C counters to be reset to zero and (ii) some
counters may reach the value of α. (Note that H counters
are irrelevant for computing semi-rules.) Any such change
in the counter of a node v affects the state (i.e., being or
not being a semi-rule) of at most three nodes: v itself and if
v is not a stick leaf, then also its two children. Thus, for a
single event, we may update our semi-rules set in constant
time.

We first observe that the number of active nodes (for
which we want to track the C counters) is at most twice the
number of U-FIB rules. Second, instead of storing counters
Cu, we just keep the timestamps of the last reset of Cu to
zero. These values are sorted in non-increasing order, kept
in a linked queue Q with additional references from and to
the nodes of the U-FIB trie. Finally, we store a pointer q
to the place in Q that splits Q into two parts: the left one

keeping counters strictly smaller than α and the right one
with counters that are at least α.

When a counter is reset to zero, it is moved to the front
of the list with its timestamp updated to the current time.
For tracking the second type of events, we set an alarm to
the time when the first counter would reach α. (This is the
counter immediately to the left of q.) When the alarm goes
off, we shift q to the left accordingly and set the alarm for the
next element. It is possible that many counters, say k, reach
α simultaneously, in which case we shift q by k positions.
By using a standard amortization argument, we may assign
a constant cost to counter resets and zero cost to the event
where a counter reaches α.

Finally, we observe that the resetting of counters can only
occur when there is a color change (of a stick leaf u) in the
U-FIB. Such a change affects at most w+1 counters of the
nodes on a path from u to the root of the stick u belongs to.
Thus, the total cost of maintaining the structure is at most
O(w) times larger than the number of color changes in the
input sequence.

To compute the set of rules instead of semi-rules, one
could try to keep H counters in a similar data structure.
However, a color change of a single node may affect H
counters of virtually all possible nodes. (Consider the U-FIB
described in Lemma II.2, where the root frequently changes
color from red to black, and back.) Below, we show that
while sometimes we indeed need to make a lot of updates,
their number can be asymptotically bounded by the number
of updates to the FIB.

Theorem V.2. HIMS can implemented in the route pro-
cessor using a data structure of size O(SIZE(U-FIB)), so
that any sequence of m1 events to the U-FIB that entails
m2 updates to the FIB can be processed in expected time
O(m1 · w +m2).

Proof: We want to augment the data structure described
in Lemma V.1. By the definition of HIMS, we know that
a semi-rule is not a FIB rule if and only if Hu ≥ α, which
is equivalent to C(lcaU(u)) ≥ α and the color of lcaU(u)
being the same as the color of u. These conditions can be
checked in constant time and when the semi-rule is created.
When a semi-rule is deleted (and was a rule), it is also
removed from the FIB. Below, we show that we may also
keep track when a node which is uninterruptedly a semi-rule
starts or ceases to be a FIB rule.

To this end, for any node v and color c, we keep the set
of all semi-rules u of color c, such that lcaU(u) = v. We
denote such a set by P (v, c), and we denote the union of
these sets over possible colors by P (v). To maintain these
sets, for each semi-rule u we keep a bidirectional pointer
to lcaU(u). To keep the memory requirement asymptotically
the same as for storing semi-rules only, we just store those
sets P (v, c) that are non-empty. This can be achieved by



keeping a hashing table for each node v, whose keys are
colors c and values are non-empty sets P (v, c).

Now, whenever the counter of v is reset to zero or
reaches α, we may easily enumerate those semi-rules (and
only them) that need to be added to or removed from the
FIB. Namely, when Cv ≥ α and v has color b, all semi-
rules from P (v, b) are hidden rules and all semi-rules from
P (v) \ P (v, b) are FIB rules. When Cv < α, all semi-
rules from P (v) are FIB rules. Thus, the additional time
overhead for modifying the data structure is proportional to
the number of FIB updates.

VI. OPEN QUESTIONS

Our work opens several interesting directions for future
research. First, obviously, the optimality of our competitive
ratio only holds for a restricted class of algorithms, and it
will be interesting to generalize the lower bound or prove
that this is not possible. Another open question regards the
design of offline algorithms: while it is quite easy to see
that under certain circumstances, e.g., when there can be at
most one color change per unit time, the problem is fixed
parameter tractable (i.e., optimal solutions can be computed
in time f(α) ·nO(1) where n denotes the number of prefixes
and f is a function of α), it remains an open question
whether a polynomial time algorithm exists.
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