
Leveraging Locality for FIB Aggregation
Nadi Sarrar⇤, Robert Wuttke⇤, Stefan Schmid⇤, Marcin Bienkowski† and Steve Uhlig‡

⇤TU Berlin, {nadi,robert,stefan}@inet.tu-berlin.de
†University of Wroclaw, mbi@ii.uni.wroc.pl

‡Queen Mary, University of London, steve@eecs.qmul.ac.uk

Abstract—Snapshots of the Forwarding Information Base
(FIB) in Internet routers can be compressed (or aggregated)
to at least half of their original size, as shown by previous
studies. However, the permanent stream of updates to the FIB
due to routing updates complicates FIB aggregation in practice:
keeping a (near-)optimally aggregated FIB in face of these routing
updates is algorithmically challenging. A sensible trade-off has
to be found between the aggregation gain and the complexity
of handling routing updates. This paper investigates whether
the spatial and temporal locality properties of routing updates
conceal opportunities for improving this trade-off in online FIB
aggregation.

Our contributions include an empirical study of the locality
of updates in public Internet routing data. To facilitate this study,
we design the Locality-aware FIB Aggregation (LFA) algorithm.
We show, that an algorithm as simple as LFA can effectively
leverage the locality of FIB churn to keep low the number of
updates to the aggregated FIB, as within time periods of a few
seconds or minutes, routing updates affect only a limited number
of regions in the FIB.

I. INTRODUCTION
At a high level, Internet routers are built around a route

processor which runs routing protocols and makes routing
decisions, and a forwarding plane which forwards packets
according to the decisions of the route processor. The crucial
link between the two components is the Forwarding Informa-
tion Base (FIB), containing the forwarding rules. The route
processor inserts and deletes FIB entries according to its route
computations. The forwarding plane uses the FIB to perform
an IP destination lookup on each incoming packet. This
requires the FIB to support very fast IP destination lookups
so that packets can be forwarded at line-rate. In addition, the
FIB needs to support frequent updates to the forwarding rules
due to the churn in the BGP routing table. Finally, the number
of forwarding rules that a FIB needs to keep is growing over
time, putting extra pressure on the FIB memory capacity.1 To
fulfill all these requirements, FIB memory used in today’s
enterprise-grade to high-end routers is a highly specialized
component, expensive, and power-hungry. It is also considered
a main limiting factor in terms of a router’s lifetime [12].

A natural and local solution to mitigate the problem —
before possible long-term solutions are deployed — is the
aggregation (or compression) of the FIB, i.e., the replacement
of the existing set of rules by an equivalent but smaller set.
The aggregation of FIB rules has the appealing property that
it is a purely local solution, in the sense that it does not
affect neighboring routers and it can be realized by the route
processor through only software modifications.

1As of March 2014, the number of BGP routes announced in the Internet has
surpassed 500, 000 entries. New forwarding rules emerge primarily because
of the growth of the Internet itself, trends for advertising more specific
routes, or the increasing demand for Virtual Private Networks (VPNs) [3],
and the migration to IPv6 is not expected to reduce the current address space
disaggregation [5].

While the aggregation of the FIB entries is beneficial
in terms of memory, it also entails a potential overhead:
As the FIB contents of a router change over time — with
peaks of several hundreds to thousands of modifications inside
one second [7] — the FIB aggregation algorithm needs to
translate every routing update into one or more updates to the
aggregated FIB. This is because when applying routing updates
as they come to the aggregated FIB, forwarding consistency
to the original FIB is likely to be violated [18]. Also, there is
a certain cost associated with each such update as the internal
FIB structures have to be updated, delaying the corresponding
changes to the forwarding plane. This is particularly relevant
in the context of Software Defined Networks (SDN), where the
task of FIB management is decoupled from the actual forward-
ing device, at a likely cost of extra update processing latency.
Hence, FIB aggregation algorithms should aim at limiting as
much as possible the rate of updates to the aggregated FIB.

Contributions. In this paper, we conduct an empirical study
of the temporal and spatial locality properties of routing
updates in the Internet. We explore their ability to reduce the
overhead in handling updates in FIB aggregation algorithms.
For this purpose, we present and evaluate the Locality-aware
FIB Aggregation Algorithm (LFA). LFA exploits the spatial
and temporal locality of churn by aggregating only selected
slices of the FIB (called STICKs) adaptively to amortize update
complexity with the aggregation gain. We provide an empirical
analysis2 of LFA based on publicly available Internet routing
data to investigate the associated trade-offs.

II. TERMINOLOGY, RELATED WORK

Terminology. We consider an Internet router with a number
of network interfaces, or ports. A Forwarding Information
Base (FIB) is a set of forwarding rules used by the router
for its packet forwarding operations, where each such rule is
a prefix-port pair (p, o). A port in this context represents all
information needed for the router to forward IP packets to
a given destination, which typically includes the IP address
of the next-hop router. For every incoming packet the router
performs a destination lookup based on the destination IP
address x of the packet. The destination lookup is a longest
prefix match: Among the forwarding rules {(p, o)}, the router
finds the longest p being a prefix of x, and forwards the packet
to output port o.

We denote the original set of forwarding rules by OT
(“original table”). The OT is updated according to the routing
protocols. Prior to downloading the OT into the router’s FIB
memory, we perform FIB aggregation: The forwarding rules
of the OT are replaced by an equivalent but smaller set,
denoted by AT (“aggregated table”). In this process, we require
strong forwarding correctness, i.e., we require the forwarding
behavior to remain exactly the same. On changes to the OT

2We are open to share our simulator source-code on request.

�

�

�

�����

���������	
����

� �

� �

� �

�

�

�

�

�

�

�

�

� �

� �

���
�� �� ��

�����	
�����

� �

� � �

�

�

� ��

�

��� ���

���� ����

����

�������������
��

� �

� � �

�

�

� �

�

��� ���

����

����

�

��	
�
��

��
�
��	��
������

������������
������������

�

����

����������������	��

� �

� � �

�

�

� �

�

��� ���

����

����

�

�����

���	���
��
�����

Fig. 1. Locality-aware FIB Aggregation (LFA)

due to routing updates, the AT must be updated accordingly.
Updating the AT however is algorithmically challenging, as
typically OT updates do not translate 1:1 into AT updates.

Related Work. There are known fast algorithms for optimal
FIB aggregation of table snapshots, such as ORTC [6] and
others [17]. However, as they do not support efficient handling
of incremental updates, a re-computation of the aggregated
FIB on each routing update is needed. This is computationally
expensive and can lead to high churn. There are several
papers that deal with this problem by proposing heuristics
that balance update complexity and aggregation gain, including
SMALTA [18] and FIFA [10], while others consider the
entropy bounds of FIB compression [15].

With this paper we support current theoretical research
in the area, which provides worst-case guarantees for the
joint optimization of FIB aggregation ratio and update cost in
scenarios with [1] and without [2] dependencies. Our empirical
study shows, that the worst-case assumptions therein are overly
conservative, and indicates that much better results can be
obtained in practice.

III. TAMING FIB UPDATE CHURN
In this section we study the locality of FIB churn based on

real Internet routing data. We propose an online FIB aggrega-
tion algorithm called Locality-aware FIB Aggregation (LFA),
whose design goal lies in enabling us to study the locality of
routing updates in the context of FIB aggregation. LFA aims
at aggregating stable parts of the FIB while keeping the less
stable ones untouched to limit update overhead. We start by
describing the LFA algorithm. Then, we present experimental
results based on routing table snapshots that provide a first look
at LFA’s aggregation abilities. Finally, we evaluate the locality
of churn under consideration of the trade-offs and parameters
of LFA. From our results, we discuss and quantify the potential
benefit of FIB aggregation techniques that treat churny regions
of the FIB differently to those with limited churn.

A. LFA: Locality-aware FIB Aggregation
LFA operates as follows. The FIB in its usual trie repre-

sentation is split into subtrees (STICKs) which are aggregated
only when they are considered stable: when a STICK has
not been affected by updates for a pre-defined time period
(� seconds), ORTC [6] is used to optimally aggregate the
STICK. On routing updates, the STICK is reverted to its original
(disaggregated) representation before the update is applied. We
simulate LFA on real BGP update streams and identify the
trade-offs associated with its parameters ↵ (spatial locality)
and � (temporal locality). In all of our simulations we verify
that AT and OT are equivalent.

In LFA, the tree is split horizontally into two parts.
The upper part, which we call GROUND, contains the less
specific prefixes and remains untouched by LFA. Hence, as
the GROUND is not subject to aggregation in LFA, routing
updates to the GROUND can be applied immediately as they
come (one update to the GROUND results in one update to the
AT). The lower part contains the more specific prefixes and
is aggregated selectively by LFA. The parameter ↵ defines at
which depth (prefix length) to draw the line that separates the
GROUND from the more specific part of the tree. All prefixes
with a prefix length � ↵ belong to the more specific part.

The more specific part of the tree is split vertically into
subtrees, called STICKs. All the nodes with prefix length = ↵
represent root nodes of individual STICKs. A STICK which
has not seen any updates for a pre-defined time period is
aggregated using the ORTC algorithm. In LFA, STICKs are
aggregated independently from the GROUND: no next-hop in-
formation, which can change over time, is being inherited from
the GROUND when aggregating a STICK. When forwarding
packets, however, STICKs do depend on next-hop information
from the GROUND for holes in a STICK’s address space. To
handle this correctly, we rely on a variant of ORTC that ensures
full congruency between OT and AT, meaning that all holes in
a STICK’s address space are retained to allow the GROUND’s
entries to determine the next-hop for a packet.

The parameter � specifies the time in number of seconds
after which a STICK is aggregated in the absence of updates.
For each STICK a timestamp is maintained that indicates the
time of its most recent update. On incoming updates to a STICK
we distinguish two cases:

1) STICK aggregated: In case the affected STICK is ag-
gregated, the STICK is reverted to its non-aggregated
(untouched) version prior to applying the update.

2) STICK untouched: Updates are applied as-is to non-
aggregated STICKs.

In both cases, the STICK’s update timestamp is set to
the time of the update. A priority queue maintains pointers
to each untouched STICK, ordered by the time of the most
recent update. A timer keeps track of the tail of the queue and
aggregation is applied to those STICKs that have an update
timestamp current time - �.

Figure 1 illustrates the algorithmic components of LFA for
↵ = 2. The trie represents a FIB, trie levels represent prefix
length starting at zero, and letters represent ports. Empty nodes
do not have a corresponding entry in the FIB. The first figure
highlights how ↵ is used to separate the GROUND from the
STICKs S1 to S3. Initially (see Figure 1 (2)), all STICKs are
aggregated using ORTC while reducing the total number of
prefixes from 8 to 5. In the figures, we append a prime symbol

Alpha

N
um

be
r o

f S
TI

C
Ks

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●
●

●

●

●

●

●

●

●

1 5 10 15 20 24

0
50

00
0

10
00

00
15

00
00

20
00

00

●

Maximum possible
Existing in real data

(a) Number of existing STICKs as a function of ↵.

Alpha

Si
ze

s
of

 S
TI

C
Ks

 in
 O

T
(lo

g−
sc

al
e)

1 5 10 15 20 24

1
10

0
10

00
0

(b) Distr. of STICK sizes in OT as a function of ↵.

Alpha

Ag
gr

eg
at

io
n

fa
ct

or
 o

f S
TI

C
Ks

: A
T/

O
T

1 5 10 15 20 24

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Per-STICK aggregation gain as a function of ↵.

Fig. 2. A first look at the impact of ↵ in LFA.

to the STICK identifiers when they are aggregated, hence we
now have the STICKs S1’ to S3’.

Next, in Figure 1 (3), we consider an update that affects
S2’. Prior to applying the update, S2’ is reverted to its
disaggregated form S2. After that, the update can be applied. In
this example the update reflects a prefix announcement which
is handled by LFA’s insert procedure. Algorithm 1 provides
pseudo-code for LFA’s insert procedure. We leave out the
delete procedure as it is similar to the insert one, except for
Lines 2 and 10 call TrieDelete() instead of TrieInsert(). After
S2 remains unchanged for � seconds, S2 is aggregated again
in Step (4).

Algorithm 1 LFA-Insert(p: prefix, o: next-hop)
1: if length(p) < ↵ then
2: TrieInsert(p, o)
3: else
4: S Stick(p)
5: if IsAggregated(S) then
6: RevertToOriginal(S)
7: else
8: Dequeue(S)
9: end if

10: TrieInsert(p, o)
11: SetT imestamp(S)
12: Enqueue(S)
13: end if

We note, that LFA introduces a certain amount of memory
overhead (e.g., for the priority queues) and additional compu-
tations for performing the aggregation. However, this affects
only the route controller (an embedded system in a router or
a separate route server), where memory and CPU resources
are cheap. The goal of this work (and several related FIB
aggregation papers) is to reduce the memory needed on line-
cards and to pay for it as little as possible in terms of additional
churn, i.e., the amount of updates to the FIBs on the line-
cards. This is particularly relevant in the context of Software
Defined Networks (SDN), where the latency and capacity of
the communication channel between the forwarding device and
the route controller can pose significant limitations [13].

B. Analysis of churn locality
LFA has been designed to facilitate studies of the locality of

churn in the FIB. More specifically, LFA allows to (1) quantify

Alpha

N
um

be
r o

f f
or

wa
rd

in
g

ru
le

s

OT size

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ●

●

1 5 10 15 20 24
0e

+0
0

1e
+0

5
2e

+0
5

3e
+0

5
4e

+0
5

●

AT size
Portion of rules in STICKs
Portion of rules in GROUND

Fig. 3. Size of aggregated STICKs and GROUND as a function of ↵.

the aggregatability of dependency-free3 regions of the FIB, (2)
monitor the locality of churn over time, and (3) study the trade-
offs of the parameters ↵ and � of LFA.

Aggregatability of STICKs. We rely on snapshots of real
routing tables to study the general aggregatability of STICKs
and the dependency on ↵. We obtained the routing table
dumps from RouteViews4 [14]. Due to space limitations and
because the results are similar5, we present results based on a
single routing table snapshot from a large US Internet service
provider. This routing table contains almost 400, 000 entries
with more than 900 unique next-hop ASes, numbers so large
that the results based on this dataset can be treated as upper
bounds on the performance of other routers”

At first, in Figure 2(a), we show the number of STICKs as
a function of ↵. The figure compares the maximum possible
number of STICKs for a given ↵ with the number of existing
STICKs in our snapshot. Figure 2(a) shows that the number
of existing STICKs is substantially smaller than the maximum
possible. This means that despite the near exhaustion of the
current IPv4 address space, IPv4 FIBs are sparsely populated
in terms of their filling of the tree data structure.

Figure 2(b) shows the impact of ↵ on the distribution of OT
STICK sizes, i.e., the numbers of prefixes in non-aggregated

3A dependency-free region of a FIB is a group of prefixes that does not
have more specifics, but less specifics may (and typically do) exist.

4Due to limitations in the data we approximate ports by next-hop ASes.
5We ran our analyses on about 30 routing table dumps from each year

between 2009 to 2012 and observed similar results.

10 12 14 16 18 20

 0
 2

 4
 6

 8
10

12
14

1
10

30
60

600

Alpha

Be
ta

M
ea

n
%

 o
f n

on
−a

gg
re

ga
te

d
ST

IC
Ks

●●●●●
●

●

●

●

●

●

●●●●●●●●
●

●

●

●●●●●●●●
●

●

●

●●●●●●●●●●
●

●●●●●●●●●●●

(a) Fraction of non-aggregated STICKs.

10 12 14 16 18 200.
0

0.
5

1.
0

1.
5

2.
0

600

60

30

10

1

Alpha

Be
ta

of

 S
TI

C
K

(d
e)

ag
gr

eg
at

io
ns

 p
er

 s
ec

on
d

●
●●

●
●●●●●●● ●

●●
●

●●●●●●● ●
●●

●
●●●●●●●

●●●
●

●●●●●●●

●●●●●●●●●●●

(b) Number of STICK (dis)aggregations.

10 12 14 16 18 20 7
5

 8
0

 8
5

 9
0

 9
5

10
0

1
10

30
60

600

Alpha

Be
ta

%
 o

f u
pd

at
es

 a
pp

lie
d

as
−i

s

●
●●●●●●●●●●

●

●
●

●
●●●●●●

●

●

●
●

●
●

●●●
●

●
●

●

●
●

●
●

●●●
●

●
●

●

●●
●

●
●

●●
●

●
●

(c) Frac. of routing updates that are applied as-is.

Fig. 4. LFA trade-offs with ↵ and �.

STICKs. We observe that both the average and the maximum
STICK size decreases as ↵ increases. For values of ↵ larger than
7, the minimum STICK size goes to 1, indicating that at least
one STICK contains no more than a single prefix. Figure 2(c)
shows the per-STICK aggregation factor as a function of ↵. For
↵ 15, STICKs can be aggregated to half of their original size,
while bigger values of ↵ result in worse aggregation factors.
We observe a non-monotonic behavior in Figure 2(c) for ↵ �
16. This is a result of the strong dependency of ORTC on the
structure of a STICK for the efficiency of its aggregation. This
dependency is more visible when STICKs are very small.

We conclude that values of ↵ 15 will lead to good
aggregation factors without incurring a high overhead for
tracking and keeping the state of large numbers of STICKs,
while at the same time achieving median STICK sizes of more
than one. It is a necessary (but not sufficient) requirement for
a STICK to be larger than one in size in order for it to be
effectively aggregatable.

Figure 3 shows, as a function of ↵, the total number
of prefixes in the AT. We further decompose the AT size
into its GROUND and STICK components. For ↵ 15, the
GROUND contributes only limited numbers of prefixes while
the prefixes from the STICK components dominate the total
size of the AT, which is more than 60% off from the size
of the OT. This is consistent with Figure 2(c), in which we
show that the aggregation gain suffers when ↵ grows beyond
15. Furthermore, we observe a steep increase in the size of
GROUND for ↵ � 20. At the same time, we see limited changes
in the STICK sizes. As a result, the total size of the AT grows
until it reaches the size of the OT (dashed line in Figure 3).

In summary, based on our analysis, a reasonable ↵ in the
general case of current IPv4 routing tables appears to lie below
16. The results in Figure 3 are particularly encouraging for
LFA as they show that even for ↵ up to 18 the total size
of the FIB can be reduced by at least 50%. This gives us
evidence in the approach of aggregating STICKs individually,
as the achieved aggregation factors are close to those from
optimal aggregation of the entire FIB [18], [6].
Trade-offs over time. Now that we have expectations from
our analysis about the impact of ↵ on the achieved aggregation
factors, we now analyze the online performance of LFA under
changing ↵ and �. In this paper, we focus on a single dataset
retrieved from a Canadian ISP router that contains more than
400,000 routing table entries. We obtain the routing table

snapshot along with a stream of more than 400,000 BGP
updates which cover a period of seven hours. This router
has almost 200 unique next-hop ASes. We verified that the
results presented are similar to those from different routers on
different days. In the following results, we consider values of
↵ ranging from 10 to 20, and values of � of 1, 10, 30, 60, and
600 seconds. We chose these values of � because they capture
the scales at which BGP routing events take place [7].

In Figure 4(a) we show the fraction of STICKs over time
which are not aggregated. This is a particularly important met-
ric to consider as it provides some intuition about the locality
of routing table updates. Non-aggregated STICKs represent
those that have seen updates within the last � seconds. The
results indicate, that for ↵ � 14 and � 60s the fraction
of non-aggregated STICKs is very low. On average, less than
0.4% of the STICKs are not aggregated (inferred by further
data inspections).

Another metric to consider is the number of
(dis)aggregations of STICKs over time. This metric tells
us how often updates hit aggregated STICKs, requiring to
disaggregate them before applying the update, and how
often STICKs are aggregated after a stable period of �
seconds. In Figure 4(b) we show the average number of
STICK (dis)aggregations per second as a function of ↵ and
�. For improved visual presentation we reverted the ordering
of values on the y-axis. The results show that even for a
value of � as small as 1s the average number of STICK
(dis)aggregations per second does not exceed 3. We also
observe that this metric strongly depends on � as the results
show a steep increase when considering � from 600s to 1s.

Finally we study the impact of ↵ and � on the fraction of
routing table updates which can be applied as they come. This
includes all routing table updates that affect either the GROUND
or non-aggregated STICKs. Figure 4(c) shows the fraction of
such updates as a function of ↵ and �. We observe that as �
decreases, this fraction also decreases. This is expected since
smaller values of � limit the ability of LFA to leverage update
locality over time. On the other hand, the influence of ↵ is
non-trivial. As ↵ increases, the GROUND increases, while the
fraction of non-aggregated STICKs decreases (Figure 4(a)). The
net effect we observe is a decrease of the number of updates
that can be applied as-is. This happens because the number of
updates to the GROUND increases very slowly with ↵, while
the fraction of non-aggregated STICKs decreases much faster

Time in days

ro

ut
in

g
up

da
te

s
pe

r s
ec

on
d

1 2 3 4 5 6 7 8 9

0
20

00
40

00
60

00
80

00
ISP USA
ISP Canada

(a) Input data: number of OT updates per second
(max of every 10 minute bin).

Time in days

%
 o

f n
on
−a

gg
re

ga
te

d
ST

IC
Ks

1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

ISP USA
ISP Canada

(b) Percentage of non-aggregated STICKs per second
(max of every 10 minute bin).

% of non−aggregated STICKs

C
D

F

0 1 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ISP USA
ISP Canada

(c) Distribution of percentages of non-aggregated
STICKs per second.

Fig. 5. LFA performance over time.

with ↵. The reason for this behavior is that smaller STICKs
have a higher likelihood of being aggregated, as they are less
likely to be affected by routing updates.

A sensible trade-off. We now derive a trade-off for ↵ and
�. Our results suggest that ↵ should not be larger than 15 to
achieve good aggregation gains. The results from our online
experiments indicate that ↵ should be � 14 to maintain a low
number of non-aggregated STICKs for � 60s. For ↵ = 14,
Figure 4(a) suggests that � should be no larger than 60s, while
Figures 4(b) and 4(c) show benefits in choosing a large value
of �. In summary, our analysis suggests values of ↵ = 15 and
� = 60s, under the churn in Internet routing tables.

While our results, which we verified using routing table
data from multiple vantage points and years, provide surpris-
ingly clear suggestions for the parameters ↵ and �, this work
poses the challenging question of how to algorithmically adapt
these parameters over time (outside the scope of this paper).

Performance over time. To better understand the perfor-
mance of LFA with ↵ = 15 and � = 60s, we now perform
experiments based on more than one week worth of routing
table updates. The results are shown in Figure 5 for two ISP
routers, one from Canada and one from the USA. We plot
the workload in Figure 5(a) as the time-series of the number
of BGP updates per second. We show the maximum value for
every 10 minute time interval to stress how bursty BGP updates
can be. We notice several routing events which cause more
than 2,000 routing table updates per second. In Figure 5(b)
we plot the corresponding fraction of non-aggregated STICKs
over time. Again, to give importance to the high (bad) values,
we show the maximum out of every 10 minute time bin. The
auto-correlation (not shown) between the original time-series
used in Figures 5(a) and 5(b) exhibits the impact of �: We
observe a strong correlation within time lags of 60, while larger
time lags show a much smaller correlation. Finally, we show in
Figure 5(c) the CDF of the fractions of non-aggregated STICKs
in one second time intervals. Contrary to Figures 5(a) and 5(b)
that show maximum values over 10 minute bins, Figure 5(c)
provides a representative perspective on the ability of LFA to
keep most of the FIB compressed over time. In more than
99% of the one second time intervals for both routers, less
than 1% of the STICKs are non-aggregated. LFA is therefore
able to leverage the locality in how the updates affect the FIB

structure, by keeping most of it compressed.

Putting it all together. Our results show that there is strong
locality in the routing table updates with respect to their spatial
and temporal properties. This locality can be exploited by FIB
aggregation algorithms such as LFA, even in the event of heavy
bursts of BGP routing updates.

IV. DISCUSSION AND FUTURE WORK
During the course of this study, two main questions arose

about the underlying causes of the locality in routing updates
and the performance of LFA in comparison to existing algo-
rithms. Here, we discuss our current findings and leave more
in-depth investigation for future work. While FIB aggregation
is still a controversial research topic, we believe that its
production use is on the horizon. Accordingly, we conclude the
discussion with some notes on the impact of FIB aggregation
on IP destination lookup times, and on the importance of FIB
aggregation in Software Defined Networks, where more care
must be taken regarding the churn in the forwarding table.

What are the causes of locality in routing updates?
Our evaluation of LFA shows, that routing updates exhibit

locality in terms of when and where they affect the routing
table. However, we did not study the underlying routing events
to explain these aspects of locality.

Further inspection of our datasets reveal, that, of all next-
hop ASes present in a routing table, only very few contribute
most updates of a burst, e.g., two (among hundreds) next-hop
ASes account for more than 50% of the updates. This suggests
that routing events propagated by a very small number of ASes
can cause significant bursts of updates.

With another set of experiments we take a finer grained
look into the composition of update bursts by attempting to
identify specific AS-AS links as main causes of such bursts.
BGP updates contain the AS-Path attribute, which is a list of
ASes representing the AS-level route to the destination. For
each consecutive AS-AS pair taken from the AS-Path attributes
of a burst, we check for their occurrence in all AS-Path’s of
that burst. We again observe a highly skewed distribution, in
which 20 AS-AS pairs already cover more than 50% of all
updates in a burst. Put differently, a few AS-pairs seem to
be present in most BGP updates (and are localised in time),
while there are multiple tens of thousands of AS-AS links in
the Internet. If now only 10 to 20 of these links propagate

BGP updates for a routing event simultaneously, they are able
to dominate a BGP update burst in a large share of the Internet.

Accordingly, we argue for further investigation of the actual
causes of the temporal locality properties in BGP update
streams. Which routing events trigger large numbers of updates
in a short amount of time? Further, we want to study the causes
of spatial locality by taking into account the address space use
practices [5] to better understand which routing events cause a
large number of updates, and how these events affect specific
areas of the FIB data structure.

How does LFA perform in comparison to SMALTA?
Given that our evaluations shed positive light on LFA’s

ability to leverage routing update locality, we now position
the performance of LFA in comparison to existing algorithms
such as SMALTA. In a nutshell, SMALTA relies on ORTC to
optimally aggregate the entire FIB, and on a routing update,
the aggregated FIB is modified to comply with the update,
while sacrificing optimal aggregation for some time, until
ORTC is re-run. We implement SMALTA and run additional
experiments. Early results indicate that SMALTA achieves
aggregation factors which are in the order of 3 to 5 percentage
points better than LFA, a minor difference considering the
absolute aggregation factors of about 30-45%.

On the other hand, LFA causes around 10 times as many
updates to the aggregated FIB when compared to SMALTA.
This is due to the fact that every STICK aggregation and
disaggregation can require series of updates to complete.
Hence, we implement another variant of LFA which uses the
SMALTA routines for handling routing updates to STICKs,
instead of relying on ORTC and the costly (dis)aggregations
of STICKs. In this variant, LFA outperforms SMALTA in the
number of AT updates by about 7%. This motivates further
research in practical locality-aware FIB aggregation schemes.

IP destination lookup times.
In this paper we ignored the impact that FIB aggregation

may have on IP destination lookup times, because they are
affected by this only to a limited extent. The state-of-the-
art data structures used for destination lookups (see [11,
chapter 15] and the references therein) use a variety of tree-like
constructs augmented with additional information. This allows
for worst-case lookup times in the order of O(logw), with w
being the bit-length of the address; practical implementations
achieve 2-3 memory lookups on average. Additionally, little is
known about proprietary data structures actually used in the
routers of different vendors.

FIB aggregation and Software Defined Networking.
We believe that our work is particularly relevant when

FIB aggregation is to be implemented in systems which have
a notable delay and/or a limited communication capacity
between the route processor and the forwarding engine. This
is the case for very large routers, as well as for remotely
controlled switches such as in large enterprise networks [8] or
data centers [9]. Examples include Software Defined Networks
(SDN) in general, as well as centralized control planes [4].
FIB update processing delays can lead to limitations in the
number of updates per second that can be applied, as prior
work has shown is the case for some existing OpenFlow
implementations [13]. Our work can also be beneficial in
combination with the caching-based IP router design that
leverages traffic properties and OpenFlow [16].

V. SUMMARY
In this paper we studied the spatial and temporal locality

properties of routing table updates. We proposed an online FIB
aggregation algorithm, called Locality-aware FIB Aggregation
(LFA), that benefits from leveraging those locality properties.
We verified, through real data-based simulations, that LFA is
able to keep most of the FIB aggregated through its compara-
bly simple approach: limiting the aggregation to stable regions
of the FIB. The lessons learned in this work, combined with
related existing algorithms, provide directions toward future
work on practical FIB aggregation algorithms.

ACKNOWLEDGEMENTS
We thank Anja Feldmann (TU Berlin) for her valuable

feedback. This work is supported by the Polish National
Science Centre grant DEC-2013/09/B/ST6/01538, as well as
the EIT ICT project ‘Software-Defined Networking (SDN)’.

REFERENCES
[1] M. Bienkowski, N. Sarrar, S. Schmid, and S. Uhlig, “Competitive FIB

Aggregation without Update Churn,” in Proc. ICDCS, 2014.
[2] M. Bienkowski and S. Schmid, “Competitive fib aggregation: Online

ski rental on the trie,” in Proc. SIROCCO, 2013.
[3] T. Bu, L. Gao, and D. Towsley, “On characterizing BGP routing table

growth,” Comput. Netw., vol. 45, 2004.
[4] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and

J. van der Merwe, “Design and implementation of a routing control
platform,” in Proc. of NSDI, 2005.

[5] L. Cittadini, W. Mühlbauer, S. Uhlig, R. Bush, P. Francois, and
O. Maennel, “Evolution of Internet Address Space Deaggregation:
Myths and Reality,” IEEE JSAC, 2010.

[6] R. P. Draves, C. King, S. Venkatachary, and B. D. Zill, “Constructing
Optimal IP Routing Tables,” in Proc. of the IEEE INFOCOM, 1999.

[7] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “BGP Churn Evolution:
A Perspective from the Core,” IEEE/ACM Trans. on Networking, 2012.

[8] C. Kim, M. Caesar, and J. Rexford, “Floodless in seattle: a scalable
ethernet architecture for large enterprises,” in Proc. ACM SIGCOMM,
2008.

[9] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
a distributed control platform for large-scale production networks,” in
Proc. of OSDI, 2010.

[10] Y. Liu, B. Zhang, and L. Wang, “Fast Incremental FIB Aggregation,”
in Proc. IEEE INFOCOM, 2013.

[11] D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols,
and Architectures. Morgan Kaufmann Publishers Inc., 2007.

[12] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB Workshop on
Routing and Addressing,” RFC 4984 (Informational), IETF, 2007.

[13] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. Moore, “OFLOPS:
An Open Framework for OpenFlow Switch Evaluation,” in Passive and
Active Measurements Conference, 2012.

[14] “University of Oregon Route Views Project,”
http://www.routeviews.org/.

[15] G. Rétvári, J. Tapolcai, A. Korösi, A. Majdán, and Z. Heszberger,
“Compressing IP Forwarding Tables: Towards Entropy Bounds and
Beyond,” in Proc. ACM SIGCOMM, 2013.

[16] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang,
“Leveraging Zipf’s Law for Traffic Offloading,” in ACM SIGCOMM
CCR, 2012.

[17] S. Suri, T. Sandholm, and P. R. Warkhede, “Compressing Two-
Dimensional Routing Tables,” Algorithmica, 2003.

[18] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh,
J. Wang, and P. Francis, “SMALTA: Practical and Near-Optimal FIB
Aggregation,” in Proc. of the ACM CoNEXT, 2011.

