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Abstract

With wireless technologies becoming prevalent at the last
hop, today’s network operators need to manage WiFi ac-
cess networks in unison with their wired counterparts.
However, the non-uniformity of feature sets in exist-
ing solutions and the lack of programmability makes
this a challenging task. This paper proposes Odin, an
SDN-based solution to bridge this gap. With Odin, we
make the following contributions: (i) Light Virtual Ac-
cess Points (LVAPs), a novel programming abstraction
for addressing the IEEE 802.11 protocol stack complex-
ity, (ii) a design and implementation for a software-
defined WiFi network architecture based on LVAPs, and
(iii) a prototype implementation on top of commodity ac-
cess point hardware without modifications to the IEEE
802.11 client, making it practical for today’s deploy-
ments. To highlight the effectiveness of the approach we
demonstrate six WiFi network services on top of Odin
including load-balancing, mobility management, jammer
detection, automatic channel-selection, energy manage-
ment, and guest policy enforcement. To further foster
the development of our framework, the Odin prototype
is made publicly available.

1 Introduction
Today’s access networks are increasingly dominated by
wireless technology at the last hop. Indeed, the WiFi
Alliance, the certification authority for WiFi devices, re-
ports almost 1.1 billion WiFi devices were shipped in
2011 [1], and predicts that this number will double by
2015. However, supporting this ever increasing num-
ber of wireless capable devices across residential, pub-
lic, and enterprise networks is non-trivial and raises new
challenges for network management, in particular for
integrating wired, cellular, and wireless network man-
agement. To highlight this need, we point to the fact
that large operators such as Deutsche Telekom (DT) [3]
and Swisscom [6] are offloading data from their cellu-

lar networks to WiFi networks to reduce the stress on
the former. Indeed, DT aims to deploy 2.5 million WiFi
hotspots by 2016. Thus, these operators face the chal-
lenge of managing their different networks in unison and
all the way to the users’ premises.

Furthermore, modern enterprise WiFi networks typi-
cally consist of few dozens to thousands of Access Points
(APs) serving a multitude of client devices including
smart-phones, laptops, and tablets. For performance
and scalability reasons, these networks require services
which include mobility management, load-balancing, in-
terference management, and channel reconfigurations.
These services have to be realized as applications on top
of the basic management functionality of the individual
access points. However, different devices from different
vendors typically offer different interfaces and do not of-
fer native support for the needed applications. Addition-
ally, today’s enterprises and provider networks are Bring-
Your-Own-Device (BYOD) networks, implying that the
network has to accommodate an even more diverse set of
user device types of different generations.

To manage this growing complexity, network oper-
ators need novel abstractions as well as new tools to
uniformly manage the wired and wireless parts of their
network, e.g., to verify network configurations, perform
troubleshooting, or systematic debugging. In wired net-
works, recent advances in Software-Defined Networking
(SDN) have enabled such features through programmatic
control of networks. In an SDN, the control plane and
data plane are decoupled, allowing network intelligence
and state to be logically centralized. Using this centrally-
available global view of the network, SDN allows oper-
ators to perform principled control and management of
networks through the use of abstractions [26]. The best
known SDN interface is OpenFlow, which specifies a
protocol for a logically centralized controller to remotely
manage forwarding tables within switches.

However, OpenFlow does not address the complexi-
ties of WiFi protocols and WiFi networks which include
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interference mitigation, mobility management, and chan-
nel selection techniques. This is unfortunate, because
point-solutions exist for these WiFi-specific network
problems but are often provided only by enterprise ven-
dors through vertically integrated solutions. However,
most cheap, off-the-shelf commodity hardware as de-
ployed in today’s access networks is outside the purview
of such enterprise solutions.

Yet, proposals exist for extensible and programmable
WiFi networks [20, 39]. However, these depend on
client-side modifications which we argue is impractical
to deploy. This is an obstacle not only for provider
networks, but also for enterprise deployments given the
trend towards BYOD.

We, in this paper, present Odin, an SDN-based so-
lution which presents a programming abstraction which
can provide the features enterprise and provider networks
need. It bridges the gap between the range of features re-
quired by network operators and the lack of programma-
bility in today’s WiFi networks. In the process of design-
ing Odin, we address the following research questions:

1. What programming abstractions are needed to ad-
dress the complexities of the IEEE 802.11 protocol
stack?

2. How can these abstractions be fit into an SDN ar-
chitecture?

3. Can the SDN architecture already be realized on top
of today’s commodity access point hardware and
without client modifications?

We find that the above questions can be answered af-
firmatively through the following contributions:

• The proposed Light Virtual Access Point (LVAP)
abstraction captures the complexities of the IEEE
802.11 protocol stack.

• We present a prototype implementation of the LVAP
approach which we have made publicly available1.

• We evaluate the framework by presenting six typical
WiFi network applications.

Odin is extensible in accordance with the features re-
quired in today’s WiFi networks, whilst being deploy-
able on top of low-cost commodity access point hard-
ware. While we introduced the basic concept of LVAPs
in our HotSDN workshop paper [30] and showed the sys-
tem’s capabilities in multiple demos [17, 24], this paper
includes the detailed architecture for software-defined
WiFi networks, a prototype implementation, as well as
a system evaluation using multiple WiFi applications.

2 Use cases
Odin has been designed for the following use cases:

1Odin source: http://sdn.inet.tu-berlin.de.

Traffic Offloading and Client Mobility: Offloading
user’s devices to WiFi allows operators to reduce stress
on their cellular infrastructure. To this end, it is benefi-
cial to provide users with consistent authentication cre-
dentials across their home networks, hotspots, and cel-
lular connections, whilst managing client mobility. This
will prevent the user from having to maintain multiple
authentication credentials, whilst allowing operators to
offload a user’s traffic onto a hotspot when available.
This is similar to what is proposed by the Hotspot 2.0 ini-
tiative, which however requires clients to support IEEE
802.11u. Furthermore, mobility management is an im-
portant feature within enterprise WiFi deployments, typ-
ically offered by today’s vendors [5] and also explored
by the research community [14, 18, 19, 20].
Network Performance Management: Channel selec-
tion, load balancing and wireless troubleshooting are
crucial for the performance of WiFi networks, partic-
ularly within dense deployments like large enterprises
or residential networks. Channel selection [7, 15,
35] involves continuously monitoring and then react-
ing to changes in the wireless environment. Load-
balancing [9, 21] typically requires control of clients’
attachment points to the network or the ability to hand
off clients between WiFi access points. Lastly, there is a
need for the ability to measure, detect, and localize inter-
ferers. This is because interference caused by non-WiFi
devices can severely impact the achievable throughput
of WiFi devices within the same vicinity [23], since both
kinds of devices share the same wireless spectrum.

3 The Odin System
In this section, we describe the components of Odin and
the Light Virtual Access Point (LVAP) abstraction.

3.1 Odin System Components
Figure 1 illustrates the components of the proposed de-
sign and their interactions. In line with the SDN con-
cept, the design decouples the control from the data
plane. This is done by having a logically centralized con-
troller that leverages OpenFlow for the wired network,
and a separate control plane protocol for the wireless
part (elaborated upon in § 8). We chose to have sepa-
rate protocols for programming the wired and wireless
parts. This is because in its current state, OpenFlow does
not extend well into the realm of the IEEE 802.11 MAC,
as its scope is restricted to programming flow table rules
on Ethernet- based switches. For instance, it cannot per-
form matching on wireless frames, cannot accommodate
measurements of the wireless medium, report per-frame
receiver side statistics, or be used for setting per-frame
or -flow transmission settings for the WiFi datapath. We
now describe the individual components in Odin:
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Figure 1: High-level design of the Odin architecture.

Odin controller: The controller enables network ap-
plications to programmatically orchestrate the underly-
ing physical network. It exposes a set of interfaces to
the applications (the northbound API) and then translates
these calls into a set of commands on the network devices
(the southbound API). The controller also maintains a
view of the network including clients, APs, and Open-
Flow switches, which the Odin applications can then
control.

Odin agents: Agents run on the wireless APs and ex-
pose the necessary hooks for the controller (and thus ap-
plications) to orchestrate the WiFi network and report
measurements. Time critical aspects of the WiFi MAC
protocol (such as IEEE 802.11 acknowledgments) con-
tinue to be performed by the WiFi NIC’s hardware. On
the other hand, non time-critical functionality includ-
ing management of client associations is implemented in
software on the controller and the agents. This realizes
a distributed WiFi split-MAC architecture. In addition,
they perform matching on incoming frames to support a
publish-subscribe system wherein network applications
can subscribe to per-frame events.

Applications: For wireless network applications to
take effective control decisions, they need access to
statistics not only at a per- frame granularity, but also
measurements of the medium itself (for instance, to
infer interference from non-WiFi devices operating in
the same spectrum). Thus, applications in Odin work
either reactively or proactively by accessing measure-
ments from multiple layers. This includes (i) measure-
ments collected by the agents, (ii) OpenFlow statistics
and (iii) measurements collected by external tools (e.g.
snmpd). Odin applications can program the network
through the northbound API offered by the controller.

3.2 Light Virtual Access Points
The Light Virtual Access Point (LVAP) is the abstraction
in our system that allows us to address the specific re-
quirements of WiFi networks, whilst allowing for unified
management of the wired and wireless portions of the
network. The LVAP is a per-client AP which simplifies
the handling of client associations, authentication, han-
dovers, and unified slicing of both the wired and wire-

less portions of the network. It enables a port-per-source
view of WiFi networks akin to that of wired networks. In
doing so, it remains orthogonal, but complementary, to
trends in physical layer virtualization and RF spectrum
slicing [29]. LVAPs are hosted on the agent, and their
assignment to agents is controlled by the controller.

3.2.1 LVAPs as per-client APs
In regular IEEE 802.11 networks, clients need to asso-
ciate with a physical AP before sending data frames.
The association process begins with the discovery phase,
where a client either actively scans for APs by generat-
ing probe requests, or passively learns about APs through
beacon frames generated by the latter. During an active
scan, APs that respond with probe response messages
become candidates for the client to associate with. The
client then decides which AP to associate with via a lo-
cally made choice. At this point, the association is de-
fined between the client’s MAC address and the BSSID
of the AP. The BSSID of an AP is a MAC address of the
AP’s wireless interface and is different from the SSID,
which is a network name.

This design of the WiFi protocol is inconvenient; there
is no mechanism for centralized control over the client’s
association because the client makes the association de-
cision entirely on its own. Furthermore, the infrastruc-
ture cannot instruct the client to re-associate without in-
troducing additional signaling techniques such as [20].

The approach of LVAPs overcomes these difficulties
without introducing additional signaling mechanisms be-
tween clients and the infrastructure, and thus conforms
to our objective of not introducing client-side modifica-
tions. With LVAPs, every client receives a unique BSSID
to connect to, essentially making them client-specific
APs. Figure 2 indicates the decision flow in handling
a client’s association using LVAPs.

When a client probe scans, a new LVAP is spawned
within the Odin agent on the physical AP. This LVAP
then responds to the client with a probe response as in-
structed by the controller, following which, the clients
completes the association handshake with its LVAP. As
a result, a physical AP hosts a unique LVAP for each
connected client. Every LVAP periodically unicasts bea-
con frames to its corresponding client. This ensures that
a client never processes a beacon frame from another
client’s LVAP. The overhead of per-client beacon gen-
eration can be reduced by increasing the beacon inter-
val, by setting the NO_ACK bit on the beacon frame, and
also leveraging higher data-rates because of the unicast
transmission. Note, beacons are typically broadcasted
but are identical to probe response frames which are uni-
casted. Unicasting beacons does not confuse client de-
vices (cf. 6.4).

As long as the client receives ACKs for the data frames
it generates and receives beacons from the AP it is asso-
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Figure 4: Odin applications operate
upon a view of LVAPs and physical APs
in their respective slices.

ciated to (in this case, an LVAP), the client stays asso-
ciated. If the state corresponding to the client’s LVAP
is migrated to and instantiated at another Odin agent
fast enough, the client does not attempt to re-scan (since
from the client’s point of view, its AP is still available).
Thus, by migrating a client’s LVAP between physical
APs, the infrastructure can now control the client’s at-
tachment point to the network, without triggering a re-
association at the client. The LVAP is thus an abstraction
for the client’s association state, and simplifies the ex-
pression of any handoff-based service like mobility man-
agers and client load-balancers in the form of network
applications. Since it does not introduce any additional
signaling mechanism between the infrastructure and the
client, it is legacy client compatible. In addition, it brings
a port-per-source view of WiFi networks akin to that of
wired networks, which simplifies fine-grained policy en-
forcement. Note, if a client experiences significant signal
strength reduction as a result of an LVAP being migrated
to a distant AP, the client will perform a regular re-scan.

While the notion of per-client BSSIDs is employed
commercially to handle mobility [5], the concept of an
LVAP is new. The LVAP as a programming abstraction
solves problems that extend beyond mobility manage-
ment, as we will demonstrate in this paper.

3.2.2 State Encapsulated by LVAPs
Figure 3 represents the state that is bound to each LVAP.
For every associated client (identified by the client’s
WiFi MAC address), there is a corresponding LVAP
which comprises the following information: a unique
virtual BSSID, one or more SSIDs, the IP address of the
client, and a set of OpenFlow rules. With encryption,
the session key will be part of the LVAP state. When
an LVAP is migrated from one physical AP to another,
all corresponding state (the BSSID, SSIDs, IP address
of the client, and OpenFlow rules) is migrated as well.
Since the LVAP’s BSSID is always consistent, the client
does not perform a re-association. By binding a set of
OpenFlow rules to the LVAP and allowing applications
to program the wireless and wired side of the AP, we in-
tegrate our framework with OpenFlow.

3.2.3 Slicing and Control Logic Isolation with
LVAPs

Accommodating multiple logical networks on top of the
same physical infrastructure with different policies and
control applications is called network slicing. A network
slice is a virtual network with a specific set of SSIDs,
where for example, the traffic may be VLAN tagged or
directed to a specific destination port. Figure 4 indicates
how slicing can be layered on top of LVAPs. A slice
is defined as a set of physical APs (or agents), clients
(and thus LVAPs), network applications, and one or more
unique SSIDs. When clients attempt to associate to a
particular SSID, they are automatically assigned to the
slice to which the SSID belongs. Thus, the client and
its LVAP are now assigned to the same slice. Applica-
tions operating on this slice can now manage the client
(e.g., perform migrations, or add/remove/update Open-
Flow rules on the client’s LVAP (cf. § 5)). The controller
ensures that an application is only presented a view of the
network corresponding to its slice. Since LVAPs are the
primitive type upon which applications make control de-
cisions, and applications do not have visibility of LVAPs
from outside their slice, we thus achieve control logic
isolation between slices.

3.2.4 Supporting Authentication Through LVAPs

Our architecture is compatible with the two most com-
monly deployed approaches for authentication.

WPA2 is the de-facto standard for authentication in
today’s WiFi networks (defined by IEEE 802.11i). In
WPA2 Enterprise, a client authenticates against an au-
thentication server with the AP acting as an authentica-
tion proxy to negotiate a session key. This session key is
added to the client’s LVAP state (cf. 3.2.2) and then used
to encrypt the connection.

Guest WiFi: In this mode, a client’s first HTTP re-
quest is redirected through OpenFlow rules associated
with the LVAP to a login page. The authentication server
returns a security token for the client to the controller
after a successful authentication.
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3.2.5 Multi-Channel Operation
Odin benefits from operating physical APs’ wireless in-
terfaces on the same channel for performing seamless
client migration. However, when performing LVAP mi-
grations between physical APs of different channels, the
operation is similar to regular WiFi handovers where
clients needs to perform a re-association. For multi-
channel operation, Odin can leverage IEEE 802.11h (re-
stricted to 5GHz band) to instruct clients to switch to a
different channel while keeping association state intact.
Additionally, Odin’s port-per-source approach to man-
aging clients with LVAPs is complementary to upcoming
trends in RF spectrum slicing such as [29]. This will en-
able multiple LVAPs on the same AP to operate on dif-
ferent channels using a single antenna.

3.3 Reactive and Proactive Applications
Network applications written on top of Odin can function
both reactively and/or proactively. Proactive applications
are timer-driven whereas reactive applications use trig-
gers and callbacks to handle events. The latter mode of
operation is important particularly within WiFi networks
due to the dynamic nature of the channel, and the system
needs to react based on inputs from different measure-
ment sources. To this end, in our current implementation,
an application can utilize multiple measurement sources.

Measurements from the agent: Reactive applica-
tions make use of a publish-subscribe system of the Odin
agent in order to have a handler invoked at the applica-
tion whenever a per-frame event of interest occurs at the
agents. In our current implementation, applications reg-
ister thresholds for link-based (PHY and MAC layer) rx-
statistics like receiver signal strength indicator (RSSI),
bit-rate, and timestamp of the last received packet. For
instance, an application can ask to be notified whenever
a frame is received at an agent at an RSSI greater than
-70dBm. In addition, applications can make use of mea-
surements such as spectral scans that can be collected by
the agents.

OpenFlow statistics: OpenFlow provides flow and
port-based statistics of entries in switches’ flow tables.
Applications can query these statistics through the con-
troller to make traffic-aware routing decisions.

External measurement sources: In addition to the
usual per-link and per-flow statistics, applications can ac-
cess data from multiple measurement sources outside the
Odin framework, too, including the CPU and memory
utilization and the channel active/busy times collected by
tools such as collectd. We demonstrate this in § 5.

4 Odin on Commodity Hardware
In this section, we describe implementation details of the
Odin prototype.

4.1 Controller
The controller is implemented as an extension to Flood-
light OpenFlow controller. This allows us to use Open-
Flow for Odin specific functionality such as tracking
client IP addresses to be attached to their respective
LVAPs by tapping into DHCP messages (cf. § 4.4). The
initial assignment of agents to slices, the initial set of
SSIDs per slice, and the network applications to run on
each slice are defined via a configuration file. The con-
troller uses a TCP-based control channel to invoke the
Odin protocol commands on the agents (cf. 7). The con-
troller organizes state on a per-slice basis, allowing it to
present applications only a view of their respective slice
in terms of associated clients, their LVAPs, and physical
APs. Applications are expressed as Java code and run on
top of the controller as threads. The programming API
includes hooks for applications to view and control map-
pings of clients to APs, add/remove SSIDs to slices, and
to register/unregister subscriptions for the pub-sub mech-
anism. As a result of using Floodlight, the controller is
not distributed and runs on a single machine.

4.2 Agent
Odin agents run on physical APs, and are implemented
in the Click Modular Router [16]. The agents imple-
ment the WiFi split-MAC together with the controller,
host LVAPs, and collect statistics on a per-frame and host
basis. They notify the controller whenever a frame is re-
ceived that matches a per-frame event subscription reg-
istered by a particular application (cf. § 3.3). Along-
side the agents, we run Open vSwitch on the APs to host
OpenFlow rules carried by LVAPs as well as those ex-
pressed explicitly by network applications and the con-
troller (for instance, to handle DHCP acknowledgments
as described in § 3.2.2). Excluding the OpenFlow rules,
the state associated with each LVAP hosted by an agent
is approximately 48 bytes in size, and up to 32 bytes per-
SSID in the slice (slices can announce multiple SSIDs).

4.3 ACK Generation
As mentioned in Section 3.2, the agent needs to ensure
the IEEE 802.11 requirement of generating ACKs for
each data frame that the client sends to its LVAP. ACK
frame generation is handled in hardware by the WiFi
cards due to their strict timing constraint. On Atheros
WiFi cards, this is implemented using a BSSID mask reg-
ister which indicates the common bits of all the BSSIDs
being hosted on that card.

Whenever the card receives a valid frame, it verifies
whether the destination address of the frame matches
one of the BSSIDs it is hosting as per the bits set in the
BSSID mask. If yes, an ACK frame is generated. How-
ever, a practical limitation exists with this mechanism.
Consider the following two BSSIDs 02:00:00:00:00:02
and 02:00:00:00:00:01. In this case, the last two bits are
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uncommon between the two BSSIDs, causing the mask
to be ff:ff:ff:ff:ff:fc. This leads to the hardware ignoring
the last two bits of the destination address of an incom-
ing frame to decide whether to generate an ACK frame.
In this case, a frame destined to 02:00:00:00:00:03 will
also cause the hardware to generate an ACK, even though
it is not hosting a BSSID with that value: a false positive.

In Odin, since we use one BSSID per client, this needs
to be handled carefully. One way to overcome this is-
sue is to assign BSSIDs to client LVAPs such that the
mask on the AP where the LVAP is being assigned re-
tains as many set bits as possible and remains orthogonal
to the masks of neighboring APs. This can be achieved in
software by the controller. Spreading LVAPs over mul-
tiple NICs and APs will also alleviate the problem. An-
other approach is to suppress spurious ACKs by modify-
ing the check that the hardware performs upon receiving
a frame. Today’s low-end Broadcom WiFi cards sup-
port custom firmware such as OpenFWWF (our Atheros
hardware does not support this). However, we conjecture
that a programmable content-addressable memory for
matching incoming frames in hardware enables possi-
bilities beyond just selective ACK generation, with little
increase in cost [2] and performance impact. This is par-
ticularly important as 802.11ac adoption is increasing,
which supports throughputs on the order of 6.77 Gb/s.
Recent work on software radios such as OpenRadio [8]
will also aid in this direction.

4.4 LVAP Assignment
We now explain how Odin assigns LVAPs to clients.
Discovery: As per IEEE 802.11, clients perform active
scans on all possible channels by broadcasting probe re-
quest messages. An agent that receives such a probe re-
quest forwards it to the controller. The controller then
generates a BSSID unique to the client, and retrieves the
list of SSIDs to announce (the union of SSIDs across
all slices that the agent belongs to). It then instructs
the agent to generate a probe response for each of these
SSIDs, through the client-specific BSSID. This is how
clients discover SSIDs being hosted via Odin.
Association: When a client tries to associate to a specific
SSID, it generates probe requests that specify the corre-
sponding SSID. An agent that receives such a probe re-
quest forwards the message to the controller. If the con-
troller has not already created an LVAP for the client,
it spawns an LVAP for the client on the agent from
which this probe request was first received. The client
is mapped to the slice that the SSID belongs to (an SSID
can only be part of one slice). Once the LVAP is spawned
for the client at an agent, the association is performed be-
tween the client and the LVAP. If a client does not asso-
ciate to its LVAP within a configurable amount of time, it
is removed from the agent. The agent process maintains

a lookup table with the mappings of the client’s MAC
address to the LVAPs state (cf. 3.2.2). It then makes use
of this per client state to prepare the right 802.11 frames
and ARP packets when communicating with clients.
DHCP and ARP: The IP address of the client is re-
quired for the agent to correctly handle ARP requests that
concern the client. The IP address of each client is ob-
tained dynamically by the controller which sets up Open-
Flow rules in order to receive an OpenFlow PACKET_
IN event whenever a DHCP-ACK packet is received at
an AP. This is done when an agent first registers with
the controller. After a client associates and begins to
obtain an IP address over DHCP, the controller receives
the DHCP-ACK via OpenFlow, obtains the IP address,
updates the client’s LVAP, and then forwards the DHCP
packet to the client via an OpenFlow PACKET_OUT.

5 Network Services on top of Odin
On top of our framework, we realized six different Odin
applications which are correlated to the use cases de-
scribed in § 2. For the evaluations, we use ten APs
from our indoor testbed distributed across the 16th floor
(roughly 750 m2) of the TEL building at the TU Berlin
campus. The WiFi APs are based on embedded hard-
ware (PC Engines Alix 3D2) equipped with Atheros
IEEE 802.11abgn cards. All APs are running OpenWrt
with the ath9k Linux driver, user-level Click, and
Open vSwitch supporting OpenFlow version 1.0. The
Odin controller runs on a x86-based server equipped with
2 CPUs at 2.1 GHz and 4 GB of RAM. We did not hit
CPU or memory limitations in any of our experiments.

Application I: Mobility Manager
Supporting client mobility is a crucial feature in en-
terprise WiFi deployments. We have implemented a
purely reactive mobility manager (89 source lines of
code (SLOC)) on top of Odin, that leverages LVAP
migrations. The application registers a subscription at
the agents to be notified whenever an agent receives a
frame at a receiver signal strength indicator (RSSI) above
a specified value. Using context information passed
through the corresponding callback (such as the exact
value of the RSSI value and source that triggered the
event), the application maintains a map of each client’s
RSSI value from the point of view of different agents. It
then assigns the clients to the agents where they can get
the best RSSI value, whilst subjecting its decisions to a
hysteresis to prevent spurious oscillations of a client be-
tween APs. With legacy switches in the core, a packet is
sent out by the new AP to trigger the “backwards learn-
ing" mechanism (ARP flushing) to setup new flow en-
tries. With OpenFlow in the core, this can be achieved
by updating flow entries along the new path.

We evaluate the architectural consequence of our reac-
tive mobility manager’s design, i.e., the number of noti-
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Table 1: Notifications generated between a handoff for two
RSSI thresholds (Trss) signal strength difference (∆).

Frame Reception Trss =−96dBm Trss =−76dBm
Rate (frames/sec) ∆ = 5 ∆ = 20 ∆ = 5 ∆ = 20

1 13.2 15.8 13.0 16.2
1000 731.66 910.4 670.2 927.0
5000 3373.4 4609.2 3223.8 4515

fications required before performing a client handoff un-
der a given mobility scenario. We show in § 6.2 that
LVAP migrations have a negligible effect on the client’s
throughput. We note that this is only one example of a
mobility manager that can be built atop Odin. As demon-
strated in 5, Odin applications can utilize different met-
rics from multiple sources to base mobility decisions on.
Experiment scenario: We use two APs and a single
x86-based client. The client associates to the network
and initiates a UDP flow. We vary three parameters for
the evaluation: (1) the threshold Trss the application sets
for subscription notifications, (2) the threshold ∆, i.e.,
the minimum required difference of the client’s RSSI ob-
served at its current AP and potential new AP for the mo-
bility manager to perform a handoff, and (3) the client’s
transmission rate. We artificially add a fixed offset to the
client’s RSSI value being recorded by the APs. Using
this, we initially set the client’s RSSI at the first AP to
be 20dB more than at the other, and then reduce it by 0.1
unit every 100ms whilst increasing it at the other AP by
the same amount. After 10s, the client’s RSSI is higher
at the second AP. When the difference is above ∆, the
client is LVAP-migrated to the new AP. Thus, only the
relative RSSI values of the client at the two APs affects
the results (not the absolute values), which enables test-
ing the application using a stationary client. We conduct
5 runs for each combination of parameters and average
the results.
Results: Table 1 shows the results of our experiments for
different combinations of Trss, ∆, and the client’s trans-
mission rate. A decreasing Trss leads to an increased
number of notifications generated. A smaller ∆ leads
to the handoff being performed faster, and reduces the
number of notifications in between handoffs. However,
the dominant factor here is the transmission rate of the
client itself. This shows that it is beneficial to introduce
a rate-limiter for generating notifications by the agents.
After all, for the same mobility scenario and during the
handoff, there is a large number of notifications gener-
ated that do not further improve the mobility manager’s
decisions. Note, the framework cannot track clients that
do not transmit any frames at all. One workaround is to
use Odin’s beacons as a mechanism to track idle clients
at different physical APs. In regular WiFi, ACK frames
do not contain the source address, but only the recipient
address. Since beacons in Odin are unicast, they cause
the client to generate an ACK frame addressed to their

unique BSSID (which identifies the client). In order to
reduce overhead, the system can set the NO_ACK bit on
the beacons to avoid ACKs from active clients.

Application II: Load Balancer
The benefit of using a load-balancer in a WiFi setting
is to increase the throughput for clients due to increased
airtime fairness. To illustrate this, consider a scenario
where there are multiple clients and one AP: each de-
vice gets almost the same share of channel access when
operating at the same physical data rate. If only one of
the clients generates upload traffic whereas the other sta-
tions only download data via the AP, the total upload
throughput almost equals the combined throughput of
the downloaders (since all download traffic is transmit-
ted by the AP and it has to share channel access with a
single uploader). This leads to airtime unfairness among
the clients. With more APs and proper load balancing,
this unfairness can be alleviated. Furthermore, load-
balancing can lead to better resource utilization due to
spacial reuse and the capture effect when the collision
probability is high. The 802.11k amendment also at-
tempts to address load-balancing, but requires modifica-
tions to the client.

Since LVAP-migrations are cheap, fast, and
infrastructure-controlled (§ 6.2), client-migration
based load-balancing is a good fit for an Odin applica-
tion. We implemented a load-balancer (76 SLOC) to
demonstrate the feasibility of such an application on top
of Odin. This application queries the framework once
per minute to obtain the list of clients that can be seen
by different APs and their corresponding RSSI values.
It uses this information to build a map of clients to lists
of agents that are candidates for hosting their respective
LVAPs. The application then evenly re-distributes
LVAPs (clients) across physical APs, constrained by the
hearing map.
Experiment scenario: We use up to ten APs. 32 clients
automatically associate to the network and request files
from a server. We use Harpoon [28] for flow-level traf-
fic generation using a heavy-tailed flow size distribution,
similar to traffic on the Internet. After the standard WiFi
association, each client sends web requests to the Har-
poon server. We conduct experiments with and with-
out load-balancing enabled. Without load-balancing, the
client is assigned to the first AP that receives the associ-
ation request. With load-balancing, each LVAP is placed
on a physical AP that has the highest RSSI and does not
violate the client load on the AP. Because of the fixed
PHY rate, no rate anomaly [31] can arise. We set the
rate for management and data frames to the basic rate
(6 Mbps). This ensures that all associated clients can ex-
change data with the APs.
Results: As expected, the overall TCP throughput in-
creases when load-balancing is enabled (see Figure 5).
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Furthermore, the total throughput is increased when in-
creasing the number of APs. The gain in throughput is
attributed to spacial reuse and the capture effect when
collisions occur. We observe that TCP connections were
established by at least 28 clients across all runs with a
median of 30 clients requesting data from the server (see
Figure 7). Figure 6 shows the CDF of the per-client
throughput of a single run. We observe an increase in
fairness among clients with load balancing enabled: i.e.,
roughly 50% of the clients were able to transmit around
20 MB of data with load balancing enabled compared
to 15% without load-balancing. The gain of per-client
throughput can be attributed to the previously mentioned
spacial reuse, capture effect, and medium access proba-
bility of the APs, where each client gets roughly an equal
share of airtime at the AP.

Application III: Wireless troubleshooting
Interference from non-WiFi devices such as microwave
ovens, cordless phones, wireless security systems, and
RF jammers can significantly impede the achievable
throughput of nearby WiFi devices. To address this, in-
terference identification systems (e.g., Cisco CleanAir)
are starting to become a part of today’s enterprise de-
ployments. These systems detect, localize, and quantify
the interference impact caused by non-WiFi sources.

To this end, Odin leverages functionality of modern
WiFi cards like Atheros AR9280 that provide coarse-
grained energy samples per sub-carrier (frequency spac-
ing of 312.5 KHz) of a WiFi channel. This provides the
necessary interface for the development of systems like
WiFiNet [23] on top of Odin for detection, localization
and quantification of interference from a variety of non-
WiFi interference sources.

Our troubleshooting application (102 SLOC) periodi-

cally (roughly every 5s) collects channel snapshots. Fig-
ure 8 shows the effect of a jammer (continuous stream
of garbage frames) on channel 11 at 2462Mhz over a pe-
riod of 5 minutes. This data can be used by a jammer
detection application, e.g., to localize a jammer via tri-
angulation.

Application IV: Automatic Channel Selection
Automatic Channel Selection (ACS) algorithms aim at
automatically determining the best available channel for
a WiFi interface. However, identifying combinations of
channels for different APs while minimizing interference
is challenging. Due the increasing amount of differ-
ent channel bandwidths within the 2.4 and 5 GHz band.
On top of Odin, an ACS application can query different
channel properties from the agent (or external sources)
for data that characterizes the channel properties. This
includes, but is not limited to, spectral samples from the
sub-carriers or the active- and busy-time in order to esti-
mate the amount of interference on the channel.

We implemented a simple ACS (97 SLOC) applica-
tion on top of Odin that is based on a per-AP channel
selection scheme. It scans across all available channels
and computes the average and the max RSSI for each
channel center frequency. Based on multiple subsequent
spectral scans, the ACS application picks the channel
with the smallest maximum and average RSSI. This ex-
ample Odin application can be extended to also utilize
additional channel properties provided by the Odin agent
or external data sources in order to estimate the chan-
nel load, e.g., channel active- and busy-time. This infor-
mation can then be used to implement functionality akin
to [25].

Figure 10 shows a snapshot of channel load of all cen-
ter frequencies within the 2.4 GHz band during the day in
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our office environment.These snapshots are aggregated
by our ACS application over time in order to get to a
view similar to the one in Figure 9. Based on this ag-
gregated view, the application then performs channel se-
lection according to the heuristic described above. As
indicated within the snapshot and the aggregated view, it
can be seen that channel 11 is less utilized than channel
1, which we confirmed to be correlated with the number
of APs operating on each channel.

Application V: Energy Efficient WiFi Networks
The problem of energy consumption in telecommunica-
tions infrastructure and mechanisms to address it have
been studied in detail [12, 22, 33]. In earlier work [24]
we demonstrated a system that uses Odin and leverages
an integrated energy and mobility management system.
The APs are organized into clusters, with each cluster
having a master AP and multiple slave APs. The mas-
ter APs always remain online and provide full coverage.
Using a combination of observed network demand and
an energy saving policy, the system activates or deacti-
vates slave APs, and offloads clients between the master
and the slaves accordingly. This is expressed as an en-
ergy manager written as an Odin application, which col-
lects energy measurements via energy meters in order to
make informed handover decisions.

Application VI: Guest policy enforcement
Centralized policy enforcement is an important require-
ment in enterprise WiFi deployments. This is one avenue
where LVAPs complement OpenFlow-based access con-
trol particularly well. A guest network application uses
the framework’s API in order to instantiate a guest net-
work on top of a slice of physical APs. It then attaches
OpenFlow rules to all LVAPs of that slice which restricts
the corresponding clients to be able to access only a cer-
tain set of subnets and ports. Since the OpenFlow entries
follow the LVAP, other applications such as a mobility
manager or load-balancer can operate on the same slice
and perform LVAP migrations as well.

6 System Evaluation
In this section, we evaluate the CPU and memory utiliza-
tion of the Odin controller as well as the latency involved
in handling probe requests.

6.1 Controller load due to Pub-Sub
We evaluate the controller’s CPU and memory utilization
when running the mobility manager (cf. Section 5) under
synthetically generated load. The aim is to understand
the load involved in running a realistic application that
makes use of the publish-subscribe subsystem.

We use nine APs of our testbed. The mobility man-
ager is notified whenever a frame is received by any of
the APs above a given signal strength threshold. Based
on these notifications, the mobility manager decides on

whether or not to trigger a client handover. A load gener-
ator running on a dedicated server invokes RPCs on the
agents in order to mock client associations from a fixed
list of clients. It then creates 1000 mock frame recep-
tions per client per second at the APs at varying signal
strengths to simulate the reception of arbitrary 802.11
frames. Depending on the signal strength of each frame,
the agents notify the controller. Across different runs of
the experiments we vary the number of clients as well as
the number of APs that can overhear a single frame trans-
mission by a client (density factor). The density factor
determines how many APs generate a notification for a
single frame transmission by a client. Each run of our
load generator for a particular parameter takes 250 sec-
onds. We repeat the experiment 10 times for each com-
bination of the parameters and observe the steady state
CPU and memory utilization.

We find that an increase in the number of clients for a
fixed density factor leads to an increase in the controller’s
CPU utilization (see Figure 11). Furthermore, for a fixed
number of clients, an increase in the density factor leads
to an increased number of the mobility manager’s sub-
scriptions being triggered, leading to more control mes-
sages to the controller. For 500 clients with density fac-
tors of 5 and 7, our APs were CPU bottlenecked before
being able to saturate the controller. However, we note
that 500 is already a very large number of clients to sup-
port with only 9 APs. The memory utilization at the con-
troller is 180±7MB across all runs.

6.2 LVAP Handoff Micro-Benchmark
Since LVAPs are a central primitive of Odin, we per-
form experiments to gauge their effectiveness. The goal
is to understand what performance related assumptions
Odin applications can make. To this end, we compare
LVAP-handoffs against standard WiFi handoffs. We also
demonstrate that frequent LVAP-based handoffs do not
affect the throughput of a TCP connection.

We use a single client and two APs of our testbed.
An HTTP server in the same network acts as a traffic
end-point. Since DHCP and authentication related de-
lays only appear in the first connection to the network,
the client is provided a static IP and no authentication is
performed. Note that an LVAP handoff is not susceptible
to the authentication delay. We conduct this experiment
on a 5 GHz channel during the night to limit interference.

Comparison of Handoffs
For comparing the impact of handoffs, a client associates
to an AP and begins an HTTP download of a large file.
After 13 seconds, the client is made to handoff to another
AP. When using Odin, the handoff uses an LVAP migra-
tion, whereas with regular WiFi, the client is explicitly
told to perform a handoff using the iw command.
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Table 2: Latency for serving probe requests (excluding
transmission time on the channel) across 9 APs

Scans per AP/s Avg. Latency [ms] Std-deviations [ms]
10 1.791 1.078
20 1.633 0.911

100 1.442 3.266
200 7.373 28.881

Figure 12 shows the TCP throughput over time with
standard WiFi compared to Odin. For regular WiFi, the
throughput drops to zero for several seconds before re-
covering. With Odin’s LVAP handoff, the TCP through-
put is unaffected. As Figure 12 indicates, there is an
overall reduction of throughput (close to 5 Mbit/sec) with
Odin as opposed to regular WiFi. This is, because we
currently use userspace Click to run the Odin agents, re-
sulting in slower and jittery forwarding performance on
our APs which makes TCP to throttle down. However,
this is orthogonal to continuously maintaining L2 and L3
connectivity, which Odin successfully achieves through
LVAP migrations.

LVAP-Handoff frequency benchmark
To understand how often an LVAP-handoff can be exe-
cuted against a client without affecting its performance,
a single iperf-based TCP flow is executed with the
client as the source over a period of 30 seconds. Between
the 5th and 25th seconds of the measurement, LVAP-
handoffs are repeatedly triggered between the two APs
at fixed rates. Figure 13 shows that LVAP-based hand-
offs are leading to no significant throughput degrada-
tion of the TCP flow. Specifically, even when repeatedly
performing LVAP-handoffs every 100 ms the throughput
degradation is negligible. This illustrates the inexpen-
sive nature of this operation. Furthermore, in the event
of LVAP oscillations due to poorly written control-logic,
client performance will not be impacted significantly.

6.3 Probe request serving latency
Since Odin invokes the controller for handling active-
scans by clients, we evaluate whether our system can
deliver probe responses to clients within the stipulated
30ms constraint.

For the experiment, a load-generator uses a hook on
the agent that triggers the effect of a probe request re-
ception. Nine APs of our testbed are used. We increase
the rate of probe requests received at each agent. Each

agent measures the time it takes in between receiving the
probe request, informing the controller, having the con-
troller respond with a BSSID, and then for the agent to
construct a probe response message.

Table 2 shows, that the delays introduced due to
our split-MAC design are well within the 30ms bound
described above. We note that the latency is domi-
nated by the network round-trip delay. Running the
load-generator at 1,800 scans per-second (200 scans
per-second-per-AP) lead to excessive queuing in the
100 Mbit/s Ethernet switch that our APs were connected
to, which lead to the larger delays.

6.4 Compatibility with clients
We have tested our framework with common WiFi client
devices, such as Windows, Linux, Mac OS X, iOS and
Android devices. Compatibility with a multitude of
client devices was demonstrated at [24, 17].

7 Related Work
We next position our work with respect to existing ap-
proaches that introduce programmability and/or perform
centralized management of wireless networks.
Why not OpenFlow?: There have been efforts to bring
OpenFlow to wireless APs (e.g., using OpenFlow to-
gether with SNMP [38]). However, we argue that Open-
Flow in its current state is ill-suited to orchestrate WiFi
networks for many reasons. It cannot perform match-
ing on wireless frames, cannot accommodate measure-
ments of the wireless medium, report per-frame receiver
side statistics, or be used for setting per-frame or -flow
transmission settings for the WiFi datapath. Yet, extend-
ing OpenFlow to accommodate these requirements does
not yield any specific benefits. By implementing a cus-
tom protocol for handling Odin agents, we thus achieve
a cleaner separation of concerns.
Vendor solutions: A plethora of commercial enterprise
WiFi solutions exist. These solutions typically man-
age APs centrally via a controller which is hosted either
in the local network [5], or remotely in the cloud [4].
Unfortunately, these solutions do not extend into the
purview of cheap low-cost commodity AP hardware that
is used by provider networks, nor do they support com-
mon, open and programmable interfaces.
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Virtual APs: Virtualization of APs have been studied in
different contexts. [5] uses a one-BSSID-per-client ap-
proach to provide seamless mobility. SplitAP [10] pools
together multiple APs in order to regulate air-time fair-
ness. On the other hand, we demonstrate multiple use-
cases for the LVAP abstraction as well as its utility as an
API for building an SDN for WiFi networks.

Programmable wireless networks and centralized
scheduling: Dyson [20] addresses the problem of ex-
tensibility in wireless LANs, by defining a set of APIs
for clients and APs to be managed by a controller. The
controller can query these nodes for channel informa-
tion, form a global view of the network, and then con-
trol the network’s behavior to enforce a set of policies.
Flashback [11] proposes a control channel technique for
WiFi networks, by allowing stations to send short control
messages concurrently with data transmissions, without
affecting throughput. This ensures a low overhead con-
trol plane for WiFi networks that is decoupled from the
data plane. DIRAC [39] proposes a split-architecture
wherein link-layer information is relayed by agents run-
ning on the APs to a central controller to improve net-
work management decisions. However, these systems
require special software or hardware on the client, which
raises questions of practicality, and goes against the de-
sign requirements for our framework. There are systems
that do not modify the client in order to deliver services.
In DenseAP [19], channel assignment and association re-
lated decisions are made centrally by taking advantage
of a global view of the network. However, it does not
offer slicing of the WiFi, and provides a limited form of
client association management because explicitly forces
clients to disconnect, and then perform a re-scan in order
to change the client’s attachment point to the network.
Thus, they do not perform client handoffs seamlessly.

CENTAUR [34] improves the data path in enterprise
WiFi networks by using centralization to mitigate hidden
terminals and to exploit exposed terminals. It is a natu-
ral fit for an application on top of Odin. FlowVisor [27]
slices the network resources at the flow level and dele-
gates control of different slices to controllers for wired
networks. It achieves this by acting as a transparent
proxy between OpenFlow switches and multiple Open-
Flow controllers. This results in isolation of slices by
ensuring that a controller operating on one slice cannot
control traffic of another slice. With our framework, we
have brought these concepts of isolation into WiFi net-
works. [37] supports multiple concurrently running ex-
periments using slicing by SSIDs. However, as we show
in this paper, slicing by BSSIDs as is done in Odin offers
more powerful client isolation and management abilities.

8 Discussion and Further Steps
In designing Odin, we were careful to keep in
mind upcoming trends in physical layer virtualization
techniques, datapath programmability, hardware-based
packet matching and operator requirements.
Virtualization of the PHY layer: Although we have
addressed isolation at the IEEE 802.11 MAC layer, our
system does not handle virtualization of the PHY layer,
which is a logical next step. The IEEE 802.11 stan-
dard defines a Point Coordination Function (PCF), for
centrally scheduled channel access. However, the PCF
is rarely implemented in today’s WiFi hardware/drivers.
Picasso [29] enables virtualization across the MAC/PHY.
It proposes a technique to perform spectrum slicing and
allows a single radio to receive and transmit on different
frequencies simultaneously. MAClets [13] allows multi-
ple MAC/PHY protocols to share a single RF frontend.
These advances can be used by Odin to operate multiple
LVAPs with different characteristics on different chan-
nels on top of the same AP. Alternative approaches, such
as [32] and [36], are incompatible with today’s WiFi
MAC/PHY and thus do not fit our design requirements.
Programmability of the WiFi data path: Odin’s cur-
rent implementation does not yet provide programmabil-
ity of per-flow WiFi PHY settings. This is well within
the scope of our design because the per-flow and -client
transmission settings can be added as LVAP state. En-
abling per-flow transmission settings will allow appli-
cations to centrally implement rate and power control.
With OpenRadio [8], our system could also benefit from
a clean-slate programmable network dataplane. This
would allow Odin to work around hardware limitations
such as that with the BSSID registers used for ACK gen-
eration (cf. § 4.3). We see OpenRadio, combined with
Odin, as a steps towards WiFi networks that are fully
programmable down to the PHY.
Performance isolation between slices: Odin in its cur-
rent form achieves control logic isolation between slices.
As of now, it is difficult to enforce FlowVisor-like band-
width and CPU isolation (on an AP) between slices.
First, per-flow bandwidth isolation can be performed
on the agents using a token-bucket approach, but this
only provides weak isolation on the physical layer, due
to the dynamic characteristic of the wireless medium.
Although modern WiFi cards are equipped with multi-
ple queues to provide QoS, the assigned priorities and
scheduling are hard to adjust. Hence, the FlowVisor ap-
proach of per-port queues does not suffice, and WiFi-
specific QoS mechanisms need to be incorporated. Sec-
ond, for agent CPU isolation, throttling control messages
between the controller and agent does not suffice. This is
because the performance of the pub-sub mechanism has
a direct bearing on the effectiveness of a reactive applica-
tion. If we throttle notifications being sent from an agent
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to the controller, it may negatively affect the decision-
making at the application. We are currently exploring
what the right design points are.

9 Conclusion
In this paper, we introduced Odin, an SDN framework
for WiFi networks. Through the LVAP abstraction, Odin
is well suited to address the complexities of the IEEE
802.11 protocol as demonstrated via the six common net-
work services we have realized with it. Odin runs on top
of today’s commodity access point hardware without re-
quiring client modifications, whilst being well-suited by
design to take advantage of upcoming trends in physical
layer virtualization and hardware extensions. Thus, with
our publicly available prototype, we present one promis-
ing way to uniformly manage both wired and WiFi net-
works given the requirements of today’s network opera-
tors. We are exploring this further by focusing on unified
management of both wired and wireless resources.
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