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Abstract—Recent Internet studies have reported on continued
traffic growth and popularity of web-based applications. Any
adverse impact that these observed trends may have on Internet
traffic flows can result in sub par performance, which in turn
results in unsatisfactory user experience.

Leveraging data collected at a major content distribution
network (CDN), we investigate flow-level performance in the
wild. We observe that packet losses differ widely across flows
of different sizes, and even for flows of similar size. To shed light
on these observations, we rely on a controlled testbed setup with
advanced instrumentation via NetFPGA cards. We highlight the
key factors which can degrade flow-performance across different
network loads and flow-size distributions.

We find that packet losses do not affect all flows similarly.
Depending on the network load, some flows either suffer from
significantly more drops (unhappy flows) or significantly less
drops than the average loss rate (happy flows). Very few flows
actually observe a loss rate similar to the average loss rate.
Therefore, any single flow is very unlikely to observe the global
packet loss process. Furthermore, we find that some flows are
burstier than others as indicated by their average congestion
window.

I. INTRODUCTION

The ubiquity of high speed Internet access, the proliferation

of smart phones and the popularity of content-rich applications

have enabled users to perform browsing, to stream videos,

to play online games, and to share content through social

networking platforms, anytime and anywhere. High speed

Internet access has also changed user expectations. Customer

studies from Google, Amazon, Yahoo, and Microsoft have

demonstrated that few milliseconds difference in web perfor-

mance impact business value [1]. As a result of changing

trends in the Internet, performance studies are crucial for

service providers, network operators and application designers.

Recent Internet traffic studies have revealed the growing

popularity of applications based on the HTTP protocol [2],

[3]. A large portion of this HTTP-based traffic is served

by Content Distribution Networks (CDNs) whose servers are

deployed around the world. The end users requesting this con-

tent are connected through heterogeneous access technologies

that have widely different properties in terms of bandwidth,

loss, and latency. As a consequence, understanding today’s

application performance is challenging.

In the past, performance has been mainly characterized by

the overall packet loss rate, delay, and jitter measured at a

vantage point. In practice, Internet traffic consists of a majority

of short flows, e.g., news feeds, Facebook status updates,

Twitter feeds, etc., along with small number of large flows,

e.g., movie downloads that result in congestion. Despite many

efforts, the dynamics of congestion is not well understood, and

as a result its impact on small and large transfers of different

applications.

Motivated by these challenges, in this paper, we look

at application performance by focusing on individual flows.

Our objective is to ascertain the impact of congestion on

flows of different sizes. With the popularity of HTTP-based

applications that rely on the TCP transport layer protocol,

packet losses are inevitable. Standard variants of TCP use

bandwidth probing to determine the available bandwidth on

the network path. TCP increases its throughput until it receives

a signal, a lost packet, that the network can no longer support

the traffic load. Therefore, in this paper, we concentrate on

packet losses as they are a key signal to better understand

application performance.

Leveraging a large data set collected at a major content

distribution network (CDN), we investigate the performance

of flows in the Internet. Our work differs from prior research

in that we consider performance metrics based on different

classes of flows according to their size, hereafter referred

to as flow-classes. We use TCP retransmissions as a key

performance metric as any retransmission in a flow indicates

either packet loss or high latency triggering a timeout event.

Our aim is to highlight that flows can experience severe

degradations that would be considered unacceptable by today’s

end-users.

Furthermore, to understand the key factors which lead to

such flow-level performance degradations, we rely on tightly

controlled experiments employing specific congestion levels

and flow size distributions. Using advanced instrumentation

across network layers, we track the loss process and its impact

on each individual flow. In addition, we record TCP congestion

window statistics for every flow. These statistics illuminate

key factors that are responsible for performance degradation

of flows in the wild.

Our main insight relates to flow happiness. We find that

packet losses are not evenly distributed among flows of

different sizes. Large flows are positively discriminated. We

call such flows happy flows. On the other hand, small flows

are negatively discriminated. We call them unhappy flows. The

losses observed by individual flows differ across flow sizes as

well as within flow sizes. Moreover, any single flow is very

unlikely to observe the overall packet loss process, i.e., average



TABLE I
SUMMARY OF PROPERTIES OF ANONYMIZED TRACE.

Name Type Time Size Duration

CDN conn. logs (sampled) Mar 2010 50GB 2 weeks

packet losses on a link are a misleading metric to understand

flow performance.

The remainder of this paper is structured as follows. In

Section II, we present our data set that we use. We explain

our experimental methodology in Section III. In Section IV,

we present our results on per flow basis. We describe related

work in Section V and summarize our work in Section VI.

II. DATASET

In this section, we describe general properties of the dataset

used. We also provide an overview of the data collection

methodology. Table I summarises the characteristics of our

dataset. Our data set consists of two weeks of connection level

logs from the servers of a major content distribution network

(CDN). We specifically select the CDN servers which are

serving customers, both DSL and mobile, of a large European

ISP.

The logs are obtained from kernel level monitoring on the

CDN servers. They include low level statistics such as total

packets, bytes, retransmitted packets and bytes, RTTs, and

durations for each TCP connection. Due to the sheer data

volume, these logs are only generated for sampled connec-

tions. Statistics for all flows are maintained in the kernel, and

once the sampling mechanism is triggered, statistics for that

flow are recorded to disk. As most of the CDN traffic are

downloads from end-users, this data provides statistics about

the connection for a single side, i.e., it captures only the HTTP

traffic in the direction from the CDN servers to the customer.

When sampling is triggered, the statistics of the connec-

tion until that time are recorded and captured on disk. The

sampling process is flow based, and therefore will provide a

representative view of all flows. Packet sampling on the other

hand is biased towards large flow sizes, missing short flows.

In total, we select 57M connections requested from various

different access technologies for our analysis.

III. METHODOLOGY

In this section, we first describe our methodology to group

flows into flow-classes based on their size. Next, we present

our experimental setup and discuss its design.

A. Flow classes

Internet flow sizes are consistent with heavy-tailed distribu-

tions [4]. Therefore, we use logarithmic classes, referred to as

flow-classes, for binning flows based on their payload bytes.

We define flow-class i as all flows such that 2i < payload

bytes ≤ 2i+1, for i = 0, 1, 2..n. The largest flow-class also

contains flows larger than 2n. By analyzing flows separately

for each size-based class, we can compare flow performance
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across flow-classes. We typically start with a flow-class of

1KB and go up to a flow-class of 1GB.

As different flow-classes may be dominated by different

types of flows, we believe that it is necessary to study flow

performance across flow-classes. For example, some types

of video objects have median sizes of 265KB, 802KB, and

1743KB [5]. Likewise, most of the Google products have

flows in the range of 4-16KB [6]. Most recent studies about

the changing nature of website complexity [7] have shown

that overall median web-page sizes for short, medium, and

long web pages has grown to 40KB, 122KB, and 286KB

respectively. Moreover, when a user observes good application

performance, he may be tempted to access larger objects and

thus generate larger flows. If the performance is impaired on

the other hand, e.g., due to retransmissions, he may restrict

himself to smaller objects, e.g., a lesser quality image, which

corresponds to smaller flows.

B. Experimental Setup

To study the key factors that degrade performance of the

flows in the wild, we rely on a configurable and flexible

testbed [8] that allows tightly controlled experiments. We now

outline the salient features of our experimental setup, as shown

in Figure 1.

Realistic Traffic Generation: To generate Internet like traffic,

we rely on multiple PCs. We select Harpoon [9] for its ability

to reproduce flow-level behavior consistent with Internet traf-

fic. The two main parameters used for customizing Harpoon

are the flow-size distribution and the flow inter-arrival time

distribution. Most flows in the Internet rely on closed-loop

feedback [10]. Therefore, we use TCP flows for most of the

traffic. We also add some UDP flows using a VoIP client

PJSIP. No other traffic was present on the network during the

experiments.

Harpoon is configured to choose file sizes according to

Pareto distributions with α = {1.2, 1.5, 2.0} and a mean of

µ = 110KB. These choices for the Pareto distribution ensure

a finite mean while ensuring that the generated traffic exhibits

variability and scaling behavior. To limit our parameter space,

we choose an exponential distribution with mean µ = 1 second

for the inter-connection times, i.e., the user waiting times

between different web requests.

Topology Emulation: The network topology we use is the

classical dumbbell as shown in Figure 1. All network inter-

faces are 1 Gigabit Ethernet cards. The configurable network

bottleneck is located between the NetFPGA router and the

Dummynet delay emulator. Harpoon clients sent Web requests

to the Harpoon servers. Using Dummynet [11] we add a delay



TABLE II
TRAFFIC GENERATION PARAMETERS.

Load Low High Very high

No. of Harpoon sessions 80 200 360

Offered load (%) 50 96 170

Average no. of concurrent TCP flows 140 1250 1700

of 150ms to every ACK packet from the Harpoon clients

to the Harpoon servers. This additional delay along with

the queuing delay due to cross traffic enables us to emulate

round-trip-times as they occur in WAN environments [2]. We

explicitly chose to focus on relatively large RTTs to better

observe the impact of the congestion and the delay imposed by

TCP’s feedback mechanism. With our bottleneck capacity of

242Mbps and mean round-trip time around 150ms, we chose

128 and 256 packets buffer.

Monitoring: One of the challenges in the testbed environment

is to monitor buffer statistics at the router buffers. Since

commercial routers do not provide fine time scale statistics

about their buffer occupancy, we opt for the NetFPGA [12] as

a router. It allows to gather highly accurate buffer statistics.

Moreover, we monitor the internal behavior of the TCP stack at

Harpoon servers using the tcphook [13] Linux kernel module.

This approach allows us to correlate TCP congestion dynamics

with different congestion levels across flow-classes.

Network Bottleneck: To ensure that the only bottleneck in our

setup is the router buffer of the NetFPGA card, see Figure 1,

we increase the maximum TCP receive window size to 20MB.

This ensures that the transfers are not TCP receiver-window

limited. All experiments use TCP New Reno to control the

size of the TCP congestion window.

Data capture: We capture packet level traces at both the

ingress and egress ports of the NetFPGA router. By comparing

both traces, we are able to pinpoint missing packets along with

transport layer information, e.g., TCP sequence numbers, as

well as timing information about when the drop occurred. In

addition, we can observe all generated flows from the ingress

port trace. Thus we can study the per-flow loss process. We

run each experiment for 30 minutes. This duration allows each

individual experiment to stabilize. The resulting traces, despite

their size, can be analyzed within a reasonable time.

Load: To create different network conditions we rely on

three different offered load levels by changing the number

of parallel Harpoon sessions on our clients. Note, increasing

the offered load can lead to different link utilizations. We

distinguish three load levels: low, high, and very high. To

determine the necessary number of Harpoon sessions, we

run the experiments without link capacity limitations. The

lowest load, called low load, corresponds to a mean link

utilization around 50% which should not impose too much

congestion. However, once the load exceeds 50% one can

expect degradations in the quality of service, e.g., increased

delay and packet loss. Therefore we choose the high load

scenario in such a way that the resulting utilization will be

close to the link capacity. In the very high load scenario

we intentionally overload the bottleneck link by letting the

Harpoon servers generate about 1.7 times the capacity of the
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Fig. 2. CDN flows: Retransmission rate vs. flow size

bottleneck link. The resulting number of Harpoon sessions and

the average number of concurrent TCP flows are shown in

Table II. A Harpoon session is equivalent to flows generated

by an Internet user.

IV. RESULTS

In this section, we first present flow performance as ob-

served from the CDN dataset. Next, we explore the potential

causes of our observations in the data set with the help of

testbed experimentation.

A. Happy flows: Myth or reality

We start by analyzing CDN logs as described in Section II.

The average packet retransmission rate across the dataset is

1.5%. This rate is comparable to previous studies [14], [6]. In

total, 16.9% of connections were found with retransmission

packets. A large number of connections therefore do not see

any packet retransmission. This implies that some of the

connections see more retransmissions. Indeed, 3.5% of the

connections have a retransmission rate higher than 20%.

Traditionally, the performance received by bulk flows is con-

sidered as the overall performance. While bulk flows contain

the majority of the bytes, most of the flows are short [4]. In

comparison to the attention that bulk flows have received, short

flows have received almost none. Yet, the performance short

flows receive can be crucial for the experience of the user.

To explore the impact of retransmission packets on individ-

ual flows, we use logarithmic binning according to the flow

size (see Section III-A). For each bin, we compute, for all

flows within the bin, the percentage of retransmitted packets.

We then use another binning to show what percentage of flows

within a given size bin, have a percentage of retransmitted

packets that falls within the bin range. This data is then

plotted as a stacked barplot with a separate bar per flow size

class. Within this bar, we show the fraction of flows with

retransmission rate larger than 25% at the top and the fraction

of flows with no retransmission packets at the bottom, i.e,
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Fig. 3. Impact of load on traffic variability and packet loss

happy flows. Thus, the y-axis shows, for each flow size bin,

the cumulative percentage of flows with retransmission rate

of at least y. In addition, the numbers on top of the bins

indicate the overall percentage of flows within the bin that

have retransmitted packets.

Figure 2 shows the stacked plot for the whole CDN

data. The stacked plot illuminates the differences of flow

performance across different flow sizes. In particular, we

found that 7.6-29.1% of flows smaller than 128KB experience

retransmissions. Such flows most likely represent interactive

web browsing. Any loss that occurs in such flows is unlikely

to be recovered by the TCP fast retransmission mechanism,

because of the limited number of packets in flight. Timeouts

are therefore necessary to recover for losses, slowing down

the data transfer. Another unexpected observation in Figure 2

relates to the large flows. Surprisingly, despite their duration,

large flows (up to 1GB) can survive without suffering any

retransmissions. Finally, middle-sized flows, in the range of

512KB-8MB, have a higher percentage of flows with higher

retransmission rates.

The observations from the CDN flows display a wide

diversity in flow performance across different flow sizes.

However, these observations do not reveal the underlying

causes. To investigate potential factors that may explain flow

performance, we next proceed to our experimental evaluation

of flow performance with in controlled testbed setup.

B. Experimental results

Next, we describe the results of our testbed experimentation.

We start by exploring the effects of traffic variability and

burstiness on the overall link utilization and packet loss. We

continue with the analysis of flow-level packet loss and finally

we present congestion window dynamics for different flow-

classes.

1) Impact of load and burstiness: To better understand the

properties of generated traffic in our testbed as explained in

Section III-B, we first concentrate on the overall statistics such

as the link utilization and traffic variability for different loads.

Although we control the average link utilization, on its own

it does not tell the whole story.

Figure 3(a) shows the link utilization across time for 1s time

bins for two experiments: one with low offered load and one

with high offered load. In contrast to the high load scenario,

the low load offers more variations in the link utilization. Note

that link utilization is a consequence of traffic contribution

by all flows that share the bottleneck link and competing for

available resources.

Next, we examine the impact of burstiness on the overall

packet loss. In principle, traffic burstiness is not a problem

if buffers can accommodate the bursts. However, when traffic

burstiness leads to packet losses, it may impede flow perfor-

mance. However, losses are inevitable with TCP because of

the way it estimates the available path capacity: by generating

losses and backing off once it detects a loss. We thus study

the average packet loss under different offered loads and flow

size distributions.

One of the contributors to Internet traffic variability is

the heavy-tailed nature of flow size distributions [4]. This

variability can be characterized by the shape parameter (α)

of a Pareto distribution. We expect to see an impact of the

degree of the heavy-tailedness of flow size distributions on

the loss process.

Figure 3(b) shows the average loss observed by TCP flows

for different loads and flow size distributions (α = 1.2, 1.5,

2.0). The impact of the heavy-tailedness of the flow size

distribution is visible. The lower the value of α, the heavier

the tail of the flow size distribution, and the higher the packet

losses due to a larger number of small flows and the few

large flows. When traffic load is high the impact of heavy-

tails on packet loss is limited by the way TCP is restricted in

its burstiness. In the rest of the paper, we present results with

α = 1.2, which matches real Internet traffic.

2) Flow-level packet loss: So far, we have considered

overall packet loss statistics, i.e., one that takes places across

all flows that share the bottleneck link. However, we already

observed in Section IV-A that flows have their own view

of the loss process. Next, we study the loss process of

flows individually across different flows sizes. We start by

studying how different flow sizes are impacted by losses for

different offered loads. For each individual flow, the relevant

information is not the overall loss rate but the fraction of its

packets that have been dropped. Therefore, we compute packet
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Fig. 4. Per flow-size packet loss probability for different loads (128 packet buffer).

loss rate for each flow as the fraction of packets that were

dropped divided by the total number of packets sent by the

sender.

Figure 4 shows the per-flow packet drop probability (y-axis,

using box-plots) across different TCP flow sizes (x-axis) and

for low, high, and very high offered load. Box-plots show the

minimum, the percentiles 25, 50, 75, and the maximum. Flow

sizes are binned into logarithmic sizes. The total packet loss

probability in this scenario is rather small with 1%. However,

the loss is not distributed evenly across all flows.

Under low load (Figure 4(a)), we observe that flows with

sizes from 512KB to 32MB suffer from higher loss rates

compared to other flow sizes. When the link utilization is

high (Figure 4(b)), a subset of the small flows suffer from

larger packet loss probability than the set of larger flows. Note,

most of the small flows still have a very small packet loss

probability. Only some unlucky flows see more losses than

the rest of the flows, for a given flow size.

Under high load, the average packet loss probability across

all flows sizes increases. Small flows tend to have a few

unlucky flows that suffer from very high loss probabilities. A

higher fraction of larger flows (larger than 16KB) experience

packet loss rates of roughly the same rate as the total packet

loss rate. Even under very high offered load some happy flows

do not observe significant losses.

We conclude that irrespective of the offered load, the

observed packet loss probability of a single flow is unlikely

to be representative of the total packet loss rate. Even very

large flows, which one may expect to experience losses close

to the overall loss rate, can observe packet loss probabilities

that differ significantly from the overall one. In general, most

flows will not observe many packet losses making them happy

flows. However, some specific flows might observe unusually

high packet loss probabilities only when subjected to severe

congestion—just as some of our CDN’s unhappy flows from

Section IV-A.

3) Flow performance and congestion window: Finally, we

investigate the bursty behavior of individual flows to correlate

flow performance and flow size. Given that TCP state is only

maintained accurately in the end-host operating system, we

collect TCP congestion window data on the servers in our

testbed setup (See Section III-B).

Since, most of the flows in the Internet are small, we

cannot expect that TCP reaches to the congestion avoidance

phase for small flows. Conversely, large flows are expected to

take advantage of the full network capacity. To confirm this

intuition, we plot Figure 5. The x-axis shows the TCP flow

sizes while the y-axis shows, using a box-plot, the distribution

of the average TCP congestion window size over the flow

lifetime. This plot corresponds to a low load scenario with

buffer size of 128 packets.

Figure 5 reveals a non-linear trend and indicate that only

large flows manage to reach an average window size of the

same order of magnitude as the buffer size. Except for very

small flows and very large ones, the average window size

grows with the flow size until it reaches values in the order of

the buffer size. Note, the congestion window can take values

as large as twice the buffer size before TCP will be signaled

that congestion occurred at the buffer.

Interestingly, those very flows in the range of 1MB-16MB

for which the TCP congestion window grows beyond the

buffer size are those who observe the unusually high packet

loss. This means that the flows of such sizes are burstier

than the large flows whereas small flows finish before they

could reach the maximum buffer size. Note that 15% of

the flows in the 256KB-4MB range in our CDN data show

retransmission rates greater than 5%. The main cause of such

a high retransmission rate is the very bursty nature of these

flows as indicated by the average congestion window size.

Large flows (> 16MB) show a steady behavior with not so

high average congestion window and packet loss rate. Given

that the throughput achieved by a TCP flow depends highly

on the congestion window, large flows do not fully utilize the

available bandwidth as indicated by their average window size.

In that case, the actual throughput that can be achieved by a

TCP flow is much lower than what one might expect, affecting

flow performance. This phenomenon has been observed in

residential traffic [2].
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V. RELATED WORK

In the past many researchers have studied the correlation

between packet losses on Internet paths, e.g., [15], [16], [17].

These approaches relied on active measurements for sampling

the path properties of the data plane, e.g., send probes every

tens of milliseconds. Due to this sampling, the actual loss

process has to be inferred from observed losses experienced by

the probes. While such an inference process might accurately

estimate the average path loss observed by a flow on a given

path, it does not provide an accurate view about how the losses

are distributed among the flows.

Sun et al. [18] studied the performance bottlenecks of

CoralCDN in PlanetLab. Their findings suggest that 10% of

the connections are server-limited and connections with no

packet loss can be congestion window limited. Heikkinen

et al. [19] compared the web characteristics of fixed and

mobile users in terms of bytes-per-connection and packet

loss. Similarly, Lee et al. [20] studied the performance of a

congested academic network. Zhang et al. [21] have found that

flow size and flow rate are two highly correlated metrics.

In the context of applications and losses, Alcock et al. [22]

have exposed the problem of YouTube block send, that causes

unexpected losses. Izal et al. [23] have studied the behavior

and performance of Bittorrent over a period of multiple

months.

VI. SUMMARY

The popularity of web-based applications have changed the

Internet traffic landscape all together. In this paper, we have

brought a new perspective on the performance of flows in the

Internet, through flow-classes based on flow sizes.

Leveraging a data set collected at a major content dis-

tribution network, we investigated flow performance, across

flow sizes. Surprisingly, we found that packet losses do not

affect all flows similarly. To find out the causes behind our

observations in the data, we rely on a controlled testbed setup

using advanced instrumentation via NetFPGA. We essentially

target the question of how packet losses impact individual

flows, depending on specific network loads and flow-size

distributions.

We found that, depending upon the network load, there are

few unhappy flows, especially small ones. On the other hand,

most flows, especially large ones, are happy and do not observe

high losses compared to the overall loss rate. Furthermore,

very few flows actually observe a loss rate similar to the

average loss rate. Therefore, any single flow is very unlikely

to observe the overall packet loss process.

In future work, we will further investigate the relationship

between different factors that affect flow performance, such

as the interactions between specific applications, the network

conditions, and user experience.
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