
Exploiting Locality of Churn
for FIB Aggregation

Nadi Sarrar*
Marcin Bienkowski†

Stefan Schmid*
Steve Uhlig‡

Robert Wuttke*

*TU Berlin / Telekom Innovation Labs
†University of Wroclaw

‡Queen Mary, University of London

TU Berlin Technical Report: 2012-12
ISSN: 1436-9915



Exploiting Locality of Churn for FIB Aggregation
Nadi Sarrar⇤, Marcin Bienkowski†, Stefan Schmid⇤, Steve Uhlig‡ and Robert Wuttke⇤

⇤TU Berlin / Telekom Innovation Labs
Email: {nadi,stefan,robert}@net.t-labs.tu-berlin.de

†University of Wroclaw
Email: mbi@ii.uni.wroc.pl

‡Queen Mary, University of London
Email: steve@eecs.qmul.ac.uk

Abstract—Snapshots of the Forwarding Information Base
(FIB) in Internet routers can be compressed (or aggregated) to
at least half of their original size, as shown by previous studies.
In practice however, the permanent stream of updates to the FIB
due to routing updates complicates FIB aggregation: keeping an
optimally aggregated FIB in face of these routing updates is
algorithmically challenging. A sensible trade-off has to be found
between the aggregation gain and the number of changes to the
aggregated FIB. This paper is the first to investigate whether the
spatial and temporal locality properties of updates to the tree-like
FIB data structure can be leveraged by online FIB aggregation.

Our contributions include (a) an empirical study of the locality
of updates in public Internet routing data, (b) the specification
and simulations of our Locality-aware FIB Aggregation algo-
rithm (LFA), and (c) a competitive analysis that sheds light on
the performance of online algorithms under worst-case update
streams. Our results show that even a simple algorithm like LFA
can effectively exploit the locality of FIB churn to keep low the
number of updates to the aggregated FIB, as most FIB updates
affect only a small number of regions in the FIB.

TOPIC: Router and switch design.
METHODOLOGY: Optimization models and methods.

I. INTRODUCTION

At a high level, Internet routers are built around a route
processor which runs routing protocols and makes routing
decisions, and a forwarding plane which forwards packets
according to the decisions of the route processor. The crucial
link between the two components is the Forwarding Informa-
tion Base (FIB), containing the forwarding rules. The route
processor inserts and deletes FIB entries according to its route
computations. The forwarding plane uses the FIB to perform
an IP destination lookup on each incoming packet. This
requires the FIB to support very fast IP destination lookups so
that packets can be forwarded at line-rate. In addition, the FIB
needs to support frequent updates to the forwarding rules due
to the churn in the BGP routing table. Finally, the number of
forwarding rules that a FIB needs to keep is growing over time,
putting extra pressure on the FIB memory capacity1. To fulfill
all these requirements, FIB memory used in modern routers is
very expensive and power-hungry. It is also considered a main
limiting factor in terms of a router’s lifetime [1].

1The BGP routing table contains more than 400, 000 entries as of mid-
2012, up 15% from just a year ago.

A natural and local solution to mitigate the problem —
before possible long-term solutions are deployed — is the
aggregation (or compression) of the FIB, i.e., the replacement
of the existing set of rules by an equivalent but smaller set.
The aggregation of FIB rules has the appealing property that
it is a purely local solution, in the sense that it does not
affect neighboring routers and it can be realized entirely in
software [2].

While the compression of the FIB is beneficial in terms
of memory, it also entails a potential overhead: As the FIB
contents of a router change over time — several hundreds
of rules are modified each second on average [3] — , FIB
aggregation may lead to a situation where already aggregated
FIB entries need to be deaggregated again [4], resulting in
additional updates to the aggregated FIB. There is a certain
cost associated with each such update as the internal FIB
structures have to be updated, delaying the corresponding
changes to the forwarding plane. Hence, FIB management
strategies, including FIB aggregation algorithms, should aim
at limiting as much as possible the number of FIB updates.

Contributions. We present and evaluate the Locality-aware
FIB aggregation algorithm (LFA). LFA exploits the spatial
and temporal locality of churn and aggregates slices of the FIB
(STICKS) adaptively to amortize update costs with aggregation
gains. We provide an empirical analysis of LFA under publicly
available Internet routing data to investigate the trade-offs
associated with LFA. Motivated by the observed locality prop-
erties, we specify a set of rules to aggregate STICKS in a timed
and amortizing manner. We present a rigorous competitive
analysis of the obtainable deterministic performance under
an arbitrary stream of FIB updates. In particular, in online
algorithms jargon, we show that the proposed rules achieve a
competitive ratio of O(w2

) where w denotes the trie depth.
We are not aware of any other formal analysis of this trade-off
in the literature.

The remainder of this paper is organized as follows. We start in
Section II with background information and the terminology, a
description of our assumptions, and a discussion of the related
work. LFA is introduced in Section III where we also report
on our empirical results on FIB churn locality. We formally
introduce and analyze a second approach for locality-aware
aggregation in Section IV. In Section V we discuss further



2

work and then conclude in Section VI.
Due to space constraints, we only sketch some formal

proofs in the paper. A full version of this paper can be found
online [5] and will be made available on ArXiv.

II. TERMINOLOGY, ASSUMPTIONS, AND RELATED WORK

Terminology. An (IP) address is a binary string of length w
(e.g., w = 32 for IPv4 and w = 128 for IPv6) or equivalently
an integer from [0, 2w�1]. An (IP) prefix is a binary string of
length at most w; we denote the empty prefix by ". A prefix
matches all addresses that have the prefix as their first bits.

We consider an Internet router with a number of network
interfaces, or ports. A Forwarding Information Base (FIB) is
a set of forwarding rules used by the router for its packet for-
warding operations, where each such rule is a prefix-port pair
(p, c). A port in this context represents all information needed
for the router to forward IP packets to a given destination. For
the presentation, we will sometimes refer to the ports by next-
hops, or colors, i.e., we assume a unique color for each port.
For every incoming packet the router performs a destination
lookup based on the destination IP address x of the packet.
The destination lookup is a longest prefix match: Among the
forwarding rules {(p, c)}, the router finds the longest p being
a prefix of x, and forwards the packet to port c. If no rule
matches, i.e., no route to the destination is known, the packet
is dropped.

For instance, consider a FIB containing four rules {(", a),
(00, b), (1, c), (11, a)}, where a, b, and c are ports. This
FIB could be replaced by an equivalent FIB containing the
rules {(", a), (00, b), (10, c)}. In this compression process, we
require strong forwarding correctness [2], i.e., we require that
the forwarding and dropping behavior remain the same.

We denote the original set of forwarding rules by OT. The
OT is updated according to the routing protocols by the route
processor. Prior to downloading the OT into the FIB of the
router we apply FIB aggregation: The forwarding rules of the
OT are replaced by an equivalent but smaller set, denoted by
AT. Hence, the FIB of the router contains the AT.

We assume continuous time; at any time t, a single for-
warding rule may change its color. The input is a sequence of
such changes called events. After a change occurs, the route
processor must ensure that the AT is equivalent to the OT.
To this end, the route processor may apply updates to the
forwarding rules in the FIB. The commands may also be issued
at any later point in time (e.g., for delayed FIB aggregation).

Assumptions. We take a pragmatic standpoint and study
algorithms that do not have any knowledge of future prefix
changes, and need to decide online on where and when to
aggregate. Not relying on predictions seems to be a reasonable
assumption considering the behavior of the route updates in
the current Internet [6].

Related Work. There are known fast algorithms for optimal
FIB aggregation of table snapshots, for example the Optimal
Routing Table Constructor (ORTC) [7] and others [8]. We rely
heavily on ORTC in this paper, as it is provably optimal for

FIB aggregation. However, as these algorithms do not support
efficient handling of incremental updates, a re-computation of
the optimally aggregated FIB on each forwarding rule change
is needed. This is computationally expensive and can lead
to high churn. There are several papers that deal with this
problem by proposing heuristics that simultaneously try to
limit the number of updates to the FIB while maintaining a
good compression rate, including SMALTA [4] and others [9],
[2]. However, none of these works give a formal bound on the
achievable performance over time neither with respect to the
number of updates to the AT, nor to the aggregation gain. They
also do not consider to use churn locality for their benefit.

III. EMPIRICAL ANALYSIS

In this section we study the locality of FIB churn based on
real Internet routing data. From our results, we discuss and
quantify the potential benefit of FIB aggregation techniques
that treat churny regions of the FIB differently to those with
limited churn. We propose an online FIB aggregation algo-
rithm called Locality-aware FIB Aggregation (LFA). LFA aims
at aggregating stable parts of the FIB while keeping the less
stable ones untouched to limit update overhead. We start by
describing the LFA algorithm. Then, we present experimental
results based on routing table snapshots that provide a first
look at the trade-offs that are associated with LFA. Finally,
we evaluate the locality of churn under consideration of the
trade-offs and parameters of LFA, based on publicly available
streams of BGP updates. Our results indicate that there is
substantial locality in routing updates which can be exploited
by FIB aggregation algorithms.

A. LFA: Locality-aware FIB Aggregation

LFA operates as follows. The FIB in its usual trie represen-
tation is split into subtrees (STICKS) which are aggregated only
when they are considered stable. This is when a STICK has
not been affected by updates for a pre-specified time period (�
seconds), the Optimal Routing Table Constructor (ORTC) [7]
is used to optimally aggregate this STICK. Before a STICK is
updated due to a routing update, it is reverted to its original
(deaggregated) representation before the update is applied. We
simulate LFA on real BGP update streams and identify the
trade-offs associated with its parameters ↵ (spatial locality)
and � (temporal locality). In all of our simulations we verify
that the AT indeed is equivalent to the OT.

In LFA, the tree is split horizontally into two parts. The
upper part, which we call GROUND, contains the less spe-
cific prefixes and remains untouched by LFA. Hence, as the
GROUND is not subject to aggregation in LFA, routing updates
to the GROUND can be applied immediately as they come (one
update to the GROUND results in one update to the AT). The
lower part contains the more specific prefixes and is aggregated
selectively by LFA. The parameter ↵ defines at which depth
(prefix length) to draw the line that separates the GROUND
from the more specific part of the tree. All prefixes with a
prefix length � ↵ belong to the more specific part.



3











 

 

 

















 

 

�
  



 

  





 



 

 





 

  





 



 





















 

  





 



 












Fig. 1. Locality-aware FIB Aggregation (LFA)

The more specific part of the tree is split vertically into
subtrees, called STICKS. All the nodes with prefix length = ↵
represent root nodes of individual STICKS. A STICK which
has not seen any updates for a pre-defined time period is
aggregated using the ORTC algorithm. In LFA, STICKS are
aggregated independently from the GROUND: no next-hop
information, which can change over time, is being inherited
from the GROUND when aggregating a STICK. Also, as original
and aggregated STICKS are congruent in their forwarding
information, there is no dependency of the GROUND on the
present state of a STICK (aggregated or non-aggregated).

The parameter � specifies the time in number of seconds
after which a STICK is aggregated in the absence of updates.
For each STICK a timestamp is maintained that indicates the
time of its most recent update. On incoming updates to a
STICK we distinguish two cases:

1) STICK aggregated: In case the affected STICK is ag-
gregated, the STICK is reverted to its non-aggregated
(untouched) version prior to applying the update.

2) STICK untouched: Updates are applied as-is to non-
aggregated STICKS.

In both cases, the STICK’s last update timestamp is set to
the time of the update. A priority queue maintains pointers to
each untouched STICK, sorted by the time of their most recent
update. A timer is implemented for keeping track of the tail
of the queue and aggregation is applied to those STICKS that
have a last update timestamp  current time - �.

Figure 1 illustrates the algorithmic components of LFA for
↵ = 2. The trie represents a FIB, trie levels represent prefix
length starting at zero, and letters represent ports. Empty nodes
do not have a corresponding entry in the FIB. The first figure
highlights how ↵ is used to separate the GROUND from the
STICKS S1 to S3. Initially, in (2), all STICKS are aggregated
using ORTC while reducing the total number of prefixes from
8 to 5. In the figures, we append a prime symbol to the STICK
identifiers when they are aggregated, hence we now have the
STICKS S1’ to S3’.

Next, in Figure 1 (3), we consider an update that affects S2’.
Prior to applying the update, S2’ is reverted to its deaggregated
form S2. After that, the update can be applied. In this example
the update reflects a prefix announcement which is handled
by LFA’s insert procedure. Algorithm 1 provides pseudo-code

for LFA’s insert procedure. We leave out the delete procedure
as it is similar to the insert one, except lines 2 and 10
call TrieDelete() instead of TrieInsert()2. After S2 remains
unchanged for � seconds, S2 is aggregated again in step (4).

Algorithm 1 LFA-Insert(P, N)
1: if P < ↵ then
2: TrieInsert(P,N)

3: else
4: S  Stick(P )

5: if IsAggregated(S) then
6: RevertToOriginal(S)
7: else
8: Dequeue(S)
9: end if

10: TrieInsert(P,N)

11: SetT imestamp(S)
12: Enqueue(S)
13: end if

B. Analysis of churn locality

LFA has been especially designed to facilitate studies of the
locality of churn in the FIB. More specifically, LFA allows us
to (1) quantify the aggregatability of dependency-free3 regions
of the FIB, (2) monitor the locality of churn over time, and
(3) study the trade-offs of the parameters ↵ and � of LFA.

Aggregatability of STICKS. We rely on snapshots of real
routing tables to study the general aggregatability of STICKS
and the dependency on ↵. We obtained the routing table dumps
from RouteViews4 [10]. As the results for the different routing
tables we analyzed are similar5, we present results based on a
single routing table snapshot from a large US Internet service
provider. This routing table contains almost 400, 000 entries
with more than 900 unique next-hop ASes.

2We note that real implementations of LFA’s insert/delete procedures must
be able to instantiate and destroy STICKS, that is when a first prefix of a STICK
is announced, or when the only prefix of a STICK is withdrawn, respectively.

3A dependency-free region of a FIB is a group of prefixes that does not
have more specifics, but less specifics may (and typically do) exist.

4Due to limitations in the data we approximate ports by next-hop ASes.
5We ran our analyses on about 30 routing table dumps from each year

between 2009 to 2012 and observed similar results.



4

Alpha

N
um

be
r o

f S
TI

C
Ks

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●
●

●

●

●

●

●

●

●

1 5 10 15 20 24

0
50

00
0

10
00

00
15

00
00

20
00

00

●

Maximum possible
Existing in real data

(a) Number of existing STICKS as a function of ↵.

Alpha

Si
ze

s 
of

 S
TI

CK
s 

in
 O

T 
(lo

g−
sc

al
e)

1 5 10 15 20 24

1
10

0
10

00
0

(b) Distribution of STICK sizes in OT as a function
of ↵.

Alpha

Ag
gr

eg
at

io
n 

fa
ct

or
 o

f S
TI

CK
s:

 A
T/

O
T

1 5 10 15 20 24

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Per-STICK aggregation gain as a function of ↵.

Fig. 2. A first look at the impact of ↵ in LFA.

At first, in Figure 2(a), we show the number of STICKS as
a function of ↵. The figure compares the maximum possible
number of STICKS for a given ↵ with the number of existing
STICKS in our snapshot. To get the maximum possible number
of STICKS, we assume that all STICKS rooted at ↵ have at
least one prefix. Figure 2(a) shows that the number of existing
STICKS is substantially smaller than the maximum possible.
This means that despite the near exhaustion of the current IPv4
address space, IPv4 FIBs are sparsely populated in terms of
their filling of the tree data structure.

Figure 2(b) shows the impact of ↵ on the distribution of OT
STICK sizes, i.e., the numbers of prefixes in non-aggregated
STICKS. We observe that both the average and the maximum
STICK size decreases as ↵ increases. For values of ↵ larger
than 7, the minimum STICK size goes to 1, indicating that
at least one STICK contains no more than a single prefix.
Figure 2(c) shows the per-STICK aggregation factor as a
function of ↵. For ↵  15, STICKS can be aggregated to
half of their original size, while bigger values of ↵ result
in worse aggregation factors. We observe a non-monotonic
behavior in Figure 2(c) for ↵ � 16. This is a result of the
strong dependency of ORTC on the structure of a STICK for the
efficiency of its aggregation. This dependency is more visible
when STICKS are very small.

We conclude that values of ↵  15 will lead to good
aggregation factors without incurring a high overhead for
tracking and keeping the state of a large numbers of STICKS,
while at the same time achieving median STICK sizes of more
than one. It is a necessary (but not sufficient) requirement for
a STICK to be larger than one in size in order for it to be
effectively aggregatable.

With Figure 3, we complete our routing table snapshot
analysis. Figure 3 shows, as a function of ↵, the total number
of prefixes in the AT. We further decompose the AT size
into its GROUND and STICK components. For ↵  15, the
GROUND contributes only limited numbers of prefixes while
the prefixes from the STICK components dominate the total

Alpha

Nu
m

be
r o

f f
or

wa
rd

in
g 

ru
le

s

OT size

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ●

●

1 5 10 15 20 24

0e
+0

0
1e

+0
5

2e
+0

5
3e

+0
5

4e
+0

5

●

AT size
Portion of rules in STICKs
Portion of rules in GROUND

Fig. 3. Size of aggregated STICKS and GROUND as a function of ↵.

size of the AT, which is more than 60% off of the size of
the OT. This is consistent with our results in Figure 2(c), in
which we show that the aggregation gain suffers when alpha
grows beyond 15. Furthermore, we observe a steep increase
in the size of GROUND for ↵ � 20. At the same time, we see
limited changes in the STICK sizes. As a result, the total size
of the AT grows until it reaches the size of the OT, see the
dashed line on Figure 3.

In summary, based on our analysis, a sensible region of ↵
in the general case of current IPv4 routing tables appears to lie
below 16. The results in Figure 3 are particularly encouraging
for LFA as they show that even for ↵ up to 18 the total size
of the FIB can be reduced by at least 50%. This gives us
evidence in the approach of aggregating STICKS individually,
as the achieved aggregation factors are similar to those from
optimal aggregation of the complete FIB [7], [4].

Trade-offs over time. Now that we have expectations from
our analysis about the impact of ↵ on the achieved aggregation



5

10 12 14 16 18 200.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

1
10

30
60

600

Alpha
Be

ta

M
ea

n 
fra

ct
io

n 
of

 n
on
−a

gg
re

ga
te

d 
ST

IC
Ks

●●●●●●
●

●

●

●

●

●●●●●●●●
●

●

●

●●●●●●●●●
●

●

●●●●●●●●●●
●

●●●●●●●●●●●

(a) Fraction of non-aggregated STICKS.

10 12 14 16 18 200.
0

0.
5

1.
0

1.
5

2.
0

600

60

30

10

1

Alpha

Be
ta

# 
of

 S
TI

C
K 

(d
e)

ag
gr

eg
at

io
ns

 p
er

 s
ec

on
d

●
●●

●
●●●●●●● ●

●●
●

●●●●●●● ●
●●

●
●●●●●●●

●●●
●

●●●●●●●

●●●●●●●●●●●

(b) Number of STICK (de)aggregations.

10 12 14 16 18 200.
75

0.
80

0.
85

0.
90

0.
95

1.
00

1
10

30
60

600

Alpha

Be
ta

Fr
ac

tio
n 

of
 u

pd
at

es
 a

pp
lie

d 
as
−i

s

●
●●●●●●●●●●

●

●
●

●
●●●●●●

●

●

●
●

●
●

●●●
●

●
●

●

●
●

●
●

●●●
●

●
●

●

●●
●

●
●

●●
●

●
●

(c) Fraction of routing updates that are applied as-is,
which is when the update affects the GROUND or a
non-aggregated STICK.

Fig. 4. LFA trade-offs with ↵ and �.

factors, we now analyze the online performance of LFA under
changing ↵ and �. For that, we rely again on publicly available
data from the RouteViews project [10]. We rely on a single
dataset taken from a Canadian ISP router that contains more
than 400,000 routing table entries. We obtain the routing table
snapshot along with a stream of more than 400,000 BGP
updates which cover a period of seven hours. This router
has almost 200 unique next-hop ASes. We verified that the
results presented are similar to those from different routers on
different days. In the following results, we consider values of
↵ ranging from 10 to 20, and values of � of 1, 10, 30, 60, and
600 seconds. We chose these values of � because they capture
the scales at which BGP routing events take place [3].

In Figure 4(a), we show the fraction of STICKS that are non-
aggregated over time. This is a particularly important metric
to consider as it provides some intuition about the locality of
routing table updates. Non-aggregated STICKS represent those
that have seen updates within the last � seconds. The results
in Figure 4(a) show, that for ↵ � 14 and �  60s the fraction
of non-aggregated STICKS is very low: On average, less than
0.4% of the STICKS are not aggregated.

Another metric to consider is the number of
(de)aggregations of STICKS over time. This metric will
tell us how often updates hit aggregated STICKS, requiring
to deaggregate them before applying the update, and how
often STICKS are aggregated after a stable period of �
seconds. In Figure 4(b) we show the average number of
STICK (de)aggregations per second as a function of ↵ and
�. For improved visual presentation we reverted the ordering
of values on the y-axis. The results show that even for a
value of � as small as 1s the average number of STICK
(de)aggregations per second does not exceed 3. We also
observe that this metric strongly depends on � as the results
show a steep increase when considering � from 600s to 1s.

Finally we study the impact of ↵ and � on the fraction of
routing table updates which can be applied immediately at no

extra cost due to deaggregations of STICKS. This includes all
routing table updates that affect either the GROUND, or non-
aggregated STICKS. Figure 4(c) shows the fraction of such
routing table updates as a function of the parameters ↵ and �.
We observe that as � decreases, this fraction also decreases.
This is expected since smaller values of � limit the ability
of LFA to leverage update locality over time. On the other
hand, the behavior of ↵ is non-trivial. As ↵ increases, the
GROUND increases, while non-aggregated STICKS decrease
(Figure 4(a)). The net effect we observe is a decrease of the
number of updates that can be applied as-is. This happens
because the number of updates to the GROUND increases very
slowly with ↵, while non-aggregated STICKS decreases much
faster with ↵. The reason for this behavior is that smaller
STICKS have a higher likelihood of being aggregated, as they
are less likely to be affected by routing updates.

A sensible trade-off. We now combine the insights from
our earlier results and extract the most sensible trade-off in
the selection of ↵ and �. Our results suggest that ↵ should
not be larger than 15 to achieve good aggregation gains. The
results from our online experiments suggest that ↵ should be
� 14 to maintain a low number of non-aggregated STICKS for
�  60s. For ↵ = 14, Figure 4(a) suggests that � should be no
larger than 60s, while Figures 4(b) and 4(c) show benefits in
choosing a large value of �. In summary, our analyses indicate
that the most appropriate values are ↵ = 15 and � = 60s.

Performance over time. To better understand the perfor-
mance of LFA with ↵ = 15 and � = 60s, we now perform
experiments based on more than one week worth of routing
table updates. The results are shown in Figure 5 for two ISP
routers, one from Canada and one from the USA. We plot the
workload in Figure 5(a) as the time-series of the number of
BGP updates per second. We show the maximum value for ev-
ery 10 minute time interval to stress how bursty BGP updates
can be. We notice several routing events which cause more



6

Time in days

# 
ro

ut
in

g 
up

da
te

s 
pe

r s
ec

on
d

1 2 3 4 5 6 7 8 9

0
20

00
40

00
60

00
80

00

ISP USA
ISP Canada

(a) Number of routing table updates per second. This
plot shows the maximum of every 10 minute time
bin.

Time in days

Fr
ac

tio
n 

of
 n

on
−a

gg
re

ga
te

d 
ST

IC
Ks

1 2 3 4 5 6 7 8 9

0.
00

0.
02

0.
04

0.
06

ISP USA
ISP Canada

(b) Fraction of non-aggregated STICKS per second
with ↵ = 15 and � = 60s. This plot shows the
maximum of every 10 minute time bin.

Fraction of non−aggregated STICKs

C
D

F

0.00 0.01 0.02 0.04 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ISP USA
ISP Canada

(c) Distribution of fractions of non-aggregated
STICKS per second.

Fig. 5. LFA performance over time.

than 2,000 routing table updates per second. In Figure 5(b) we
plot the corresponding fraction of non-aggregated STICKS over
time. Again, to give importance to the high (bad) values, we
show the maximum out of every 10 minute time bin. The auto-
correlation (not shown) between the original time-series used
in Figures 5(a) and 5(b) exhibits the impact of �: We observe
a strong correlation within time lags of 60, while larger time
lags show a much smaller correlation. Finally, we show in
Figure 5(c) the CDF of the fractions of non-aggregated STICKS
in one second time intervals. Contrary to Figures 5(a) and 5(b)
that show maximum values over 10 minute bins, Figure 5(c)
provides a representative perspective on the ability of LFA to
keep most of the FIB compressed over time. In more than
99% of the one second time intervals for both routers, less
than 1% of the STICKS are non-aggregated. LFA is therefore
able to leverage the locality in how the updates affect the FIB
structure, by keeping most of it compressed.

Putting it all together. Our results show that there is strong
locality in the routing table updates with respect to their spatial
and temporal properties. This locality can be exploited by FIB
aggregation algorithms such as LFA, even under the bursts of
routing table updates generated by BGP.

IV. A COMPETITIVE ANALYSIS

Motivated by the empirical results discussed in the previous
section, we investigate the trade-off between AT size and
update cost from a formal competitive analysis perspective.
In particular, we propose a simple online scheme HIMS
(for “hide invisible merge siblings”) to aggregate subtrees or
STICKS in a local manner such that update costs are amortized.

Competitive analysis [11] is a framework to study the per-
formance of an online algorithm in the worst case. Essentially,
an online algorithm is an algorithm that does not have any
knowledge of future BGP updates, and needs to decide online
on where and when to aggregate the AT. The yard-stick to
evaluate the quality of an online algorithm ALG is an optimal

offline algorithm OPT which knows the whole input sequence
in advance.

Definition 4.1 (Competitive Ratio): We call an online algo-
rithm ALG ⇢-competitive if there exists a constant k, such
that for any input sequence it holds that COST(ALG) 
⇢ · COST(OPT) + k. The competitive ratio of an algorithm
is the infimum over all possible ⇢ such that the algorithm is
⇢-competitive.

For our formal description, we focus on color changes only
and assume continuous time where at any time t, a forwarding
rule may change a port (i.e., color). The input to the algorithms
is a sequence of such changes called events. As before, the
original FIB is referred to as OT, the aggregated one as AT.

We associate a fixed cost � to any AT rule change. The
total cost incurred is called update cost; the cost incurred
by an algorithm ALG in a time interval I is denoted by
U-COSTI(ALG). The second type of cost we want to optimize
is the size of the AT — the number of rules in the AT. For
an algorithm ALG and time t, we denote the size of the AT at
time t by SIZEt(ALG). The total memory cost in a time inter-
val I is then defined as M-COSTI(ALG) =

R
I

SIZEt(ALG) dt.
This paper focuses on minimizing the sum of these two costs,
i.e., COST(ALG) = U-COST(ALG) + M-COST(ALG). Note
that the parameter � can be used to control the trade-off
between the two costs.

We represent both the OT and the AT as one-bit tries.
This affects merely the presentation, as we do not make
assumptions about the actual implementation of the OT/AT
data structures. We assume that each non-leaf node has exactly
two children. Each node in the trie (corresponding to some
prefix p) has an associated color c if there is a forwarding rule
(p, c); a node without any associated color is called blank. We
assume minimal tries, that is, tries without blank sibling leaves



7

(they may contain blank leaves, though).
For any node v, we denote the subtree rooted at v by T (v).

We call a non-root node left (right) if it is a left (right resp.)
son of its parent. Sometimes it is convenient to identify the
nodes with the address ranges they represent. In particular, we
call two nodes adjacent or overlapping if the address ranges
they cover are adjacent or overlapping, respectively. Note that
the latter case implies that nodes are in an ancestor-descendant
relation and one range is in fact contained in the other.

Moreover, we will make use of the following definitions.

Definition 4.2 (Rules and Least Colored Ancestor): We
call a node v a OT (AT) rule if it is colored in the OT (in
the AT). For any node v (also a blank one), we denote its
least colored ancestor (the non-blank ancestor farthest from
the root) in the OT and in the AT by lcaU(v) and lcaF(v),
respectively.

We start by pointing out that the coloring of the OT (AT)
implies the coloring of the address space [0, 2w � 1]: each
address has the color of the prefix that would be applied as
a forwarding rule. We say that such a node v determines the
color of address j in the OT (AT). Unlike in the OT, the
node that determines the color of a given address in the AT
may change with time. For presentation, we slightly extend the
address space, incorporating two blank addresses �1 and 2

w.
We call a rule in the OT which does not determine the

color of any address superfluous. As the color changes of such
nodes can be ignored, we may assume that the OT contains
no such nodes as they can be removed at a constant cost by
an algorithm at the very beginning. Additionally, such removal
yields the following property.

Observation 4.3: Any input event (a color change) changes
the coloring of the address space, and hence any algorithm has
to react by modifying the AT and paying at least �.

For our online aggregation algorithm, we will again partition
the nodes of the OT trie into STICKS. In doing so, we define
STICKS differently to STICKS in LFA. In HIMS we allow
STICKS to reside in “inner” parts of the trie, rather than
focusing on STICKS connecting leaves only. Concretely, we
group all nodes into STICKS and a remaining set of blank
nodes. Each STICK will contain at least one colored node
and possibly some blank nodes, and represents a “subtree”
(not necessarily connecting leaves) that can be aggregated
independently.

To this end, we first group all rules of the OT into sets
L1, L2, L3, . . .. Each Li is a maximal (w.r.t. to cardinality) set
of colored nodes whose covered address spaces are pairwise
non-overlapping, such that if all its nodes were of the same
color c, they could be compressed to a single node vi of color
c. Note that this partitioning does not depend on the order in
which we gather nodes into sets Li. A STICK Si is defined
to contain all nodes “between vi and Li inclusively”, i.e., all
nodes from T (vi) that are either from Li or are ancestors of
Li, cf. Fig. 6. Li, Si \ Li, and vi are called the leaves, the

OT:

Fig. 6. Partition of the OT into STICKS. Superfluous nodes are already
removed. STICK boundaries are marked with dashed lines.

internal nodes and the root of STICK Si, respectively. When
Li is a singleton, Si is also a singleton and is called trivial
STICK. As OT does not contain superfluous nodes, all STICKS
are disjoint and all internal nodes of a STICK are blank. We
call nodes that belong to a STICK active.

In order to study churn-aware FIB compression from a
competitive analysis perspective, we distill the basic time and
space locality properties of the LFA algorithm, and introduce
a simple approach called HIMS (“hide invisible merge sib-
lings”). The HIMS online algorithm operates over STICKS; In
our context, HIMS is just a small set of basic rules, which
seek to amortize update costs over time.

HIMS keeps a subset of active nodes in the AT, while all
the inactive nodes are always blank. For any active node, it
defines two counters that are functions of time and depend
on the coloring of the OT. Fix any node u belonging to some
STICK S. If u is a leaf of S, then L(u) = {u}, otherwise L(u)
contains all leaves of S that are descendants of u. Furthermore,
if u is not a root of a STICK, p(u) denotes its parent in the
trie, otherwise p(u) is undefined.

1) For any node u, the counter Cu(t) measures how long
till time t (uninterruptedly) all nodes of L(u) have the
same color. Hence, for a STICK leaf u, Cu(t) simply
measures the time since the last change of u’s color.

2) The second counter is used to hide “invisible” nodes.
Assume that lcaU(u) exists. The counter Hu(t) measures
how long till time t (uninterruptedly) all nodes of L(u)[
{lcaU(u)} have the same color. When lcaU(u) does not
exist, Hu(t) = 0 for any time t.

Any color change of a STICK leaf u causes resetting the C
and H counters on the path from u to the root of a STICK
containing u. Similarly, the color change of lcaU(u) resets
all H counters from the STICK containing u. Note also that
Cu(t) � Hu(t), Cp(u)(t)  Cu(t) and Hp(u)(t)  Hu(t) if
p(u) is defined.

The algorithm HIMS keeps an active node u as a rule in
the AT at time t if and only if the following three conditions
hold:

1) Hu(t) < �,
2) Cu(t) � � or u is a STICK leaf,
3) Cp(u)(t) < � or u is a STICK root.

The color of u is the color of nodes in L(u). Note that this
color is unique (either u is a leaf and then L(u) is a singleton,



8

or Cu(t) > 0). When a change in the AT is enforced by these
rules, HIMS makes the minimal necessary amount of changes
to achieve the desired state of the AT.

To get some understanding of the behavior of HIMS, let us
take a look at two extreme cases. For a trivial STICK consisting
of a single node u, the second and the third condition always
hold as u is both a STICK leaf and a STICK root. Therefore, the
algorithm simply waits till Hu(t) reaches � and then removes
(the invisible) u from the AT. On the other hand, for a STICK
S that has no colored ancestors in the OT, Hu(t) = 0 for any
u 2 S.

The following theorem states our main formal result: The
HIMS strategy achieves a good performance even compared
to an optimal offline algorithm.

Theorem 4.4: HIMS is O(w2
)-competitive, where w is the

binary address length.
More precisely, as we will see in the proof, the competitive
ratio only depends on the maximal prefix length (rather than
the entire address length). For example, the longest prefix
observed in our empirical study in Section III is 24 bits.

Proof Sketch. Due to space constraints, we only sketch the
proof. A full version of the proof can be found online [5].

First, we prove that due to the slow pace of changes
triggered by HIMS, we may always charge an AT update either
to a change of the OT, or to a time period with a length of at
least � that this (or a related) rule spent in the AT. By assuring
that no rule will be charged more than O(w) times, we obtain
the following bound.

Lemma 4.5: For any input sequence, U-COST(HIMS) =

O(w) · (M-COST(HIMS)+m · �), where m is the number of
color changes in the input sequence.

It remains to compare M-COST(HIMS) to COST(OPT).
To this end, we introduce the concept of rainbow points. A
rainbow point is an address-time pair (a, t), denoting that at
time t address a 2 [�1, 2w � 1] has a different color than the
address a+ 1 (where blank is treated as an additional color).
We say that rainbow point (a, t) occurs at time t. We call
two rainbow points different if their addresses are different.
Rainbow points measure the spatial-temporal complexity of
the coloring of the address space; also OPT has to represent
this coloring by its own AT.

Lemma 4.6: If there are � pairwise different rainbow
points occurring in some time interval I of length �, then
COSTI(OPT) � dk/2e · �.

It remains to show how to find sufficiently many rainbow
points on the basis of the snapshot of the AT at certain
times. The following lemma captures the core properties of
the optimizations performed by HIMS, essentially stating that
if at some time the AT contains two “neighboring” nodes, then
either they cannot be aggregated by HIMS now, or it was not
possible to aggregate them in the nearest past. In either case,
we provide a witness (a rainbow point) to support such a claim.

Lemma 4.7: Fix any time t at which the AT of HIMS does

not change, and an address a. Assume the colors of a and a+1

are determined in the AT by two nodes u and v, respectively.
For any of the following three cases: (i) u and v are siblings;
(ii) u is a left node and v is its ancestor; (iii) v is a right
node and u is its ancestor; there exists a rainbow point (a, t0),
where t0 2 (t� �, t].

Lemma 4.8: Fix any time t at which the AT of HIMS does
not change, let � be the number of entries in this AT, and
let I denote interval (t � �, t]. Then the number of pairwise
different rainbow points in I is ⌦(k/w).

Proof: We only sketch the proof. First, we group the
leaves in the AT of HIMS. We sweep the leaves from left
to right, partitioning them into groups G1, G2, . . . , Gh. In
the grouping process, we put two consecutive leaves u, v
(potentially representing non-adjacent address ranges) into the
same group Gi when either (i) both u and v are left nodes
and v is a descendant of the right sibling of u, or (ii) both u
and v are right nodes and u is a descendant of the left sibling
of v. In the former case, we call a group left, in the latter —
right. One may observe that for a single group Gi the number
of leaves from Gi along with the numbers of their ancestors
is at most O(w), and thus h = ⌦(k/w).

We call a pair of two consecutive groups Gi and Gi+1 non-
critical if Gi is a right group and Gi+1 is a left one, otherwise
such a pair is critical. Among all h�1 consecutive group pairs,
at least ⌦(h) are critical. It suffices to show that for any critical
pair of groups Gi and Gi+1, either (bi, ti) or (ai+1 � 1, ti)
is a rainbow point for some ti 2 I , where bi is the rightmost
address covered by a leaf from Gi, and we denote the leftmost
address covered by a leaf from Gi+1 by ai.

We denote the rightmost leaf of Gi by vi and the leftmost
leaf of Gi+1 by vi+1. We assume that address bi + 1 is non-
blank, otherwise we would immediately obtain that (bi, t) is
a rainbow point. As Gi and Gi+1 are a critical pair, at least
one of the two conditions holds: (i) vi is a left node, or (ii)
vi+1 is a right node; we assume the former without loss of
generality. Let ui be the node that determines the color of
the address bi + 1. We consider three cases depending on the
relation between the levels (i.e., depth in the trie) of ui and
vi, henceforth referred to by lev(ui), lev(vi), respectively.

1) lev(ui) < lev(vi). As vi is a left node, the address ranges
of vi and ui cannot be adjacent, and therefore ui is an
ancestor of vi. By Lemma 4.7, there is a rainbow point
(bi, ti), where ti 2 I .

2) lev(ui) = lev(vi). Then, ui is the right sibling of vi.
By Lemma 4.7, there is a rainbow point (bi, ti), where
ti 2 I .

3) lev(ui) > lev(vi). Then, ui is a left node, whose
leftmost address is bi + 1. Note that ui cannot be a
leaf as then it would belong to Gi. Furthermore, vi+1

is the leftmost leaf of the subtree rooted at ui, i.e.,
lev(vi+1) > lev(ui) > lev(vi). This implies that vi+1

has to be a right node as otherwise it would belong to
Gi. Let ui+1 = lcaF(vi+1) (it can be either ui or some
of its descendants). As vi+1 is a right node and is the
leftmost leaf of ui+1, node ui+1 determines the color



9

of ai+1 � 1. Hence, by Lemma 4.7, there is a rainbow
point (ai+1 � 1, ti), where ti 2 I .

Lemma 4.6 combined with Lemma 4.8 allows to state that
M-COST(HIMS) = O(w)·COST(OPT). On the other hand, by
Observation 4.3, OPT has to pay the term O(m · �) occurring
in the statement of Lemma 4.5, and thus, U-COST(HIMS) =
O(w2

) · COST(OPT). This yields Theorem 4.4.

V. DISCUSSION AND FUTURE WORK

In this paper we ignored the impact that FIB aggregation
may have on IP destination lookup times, because they are
affected by this only to a limited extent. The state-of-the-
art data structures used for destination lookups (see, [12,
chapter 15] and the references therein) use a large variety
of tree-like constructs augmented with additional information.
This allows for lookup times in the order of O(logw),
with practical implementations using 2-3 memory lookups on
average. Additionally, little is known about proprietary data
structures actually used in the routers of different vendors.

We believe our work is particularly relevant when FIB
aggregation is to be implemented in systems which have a
notable delay between the route processor and the forwarding
engine. This is the case on very large routers, as well as
on remotely controlled switches such as in large enterprise
networks [13] or data centers [14]. The resulting FIB update
processing delays can lead to limitations in the number of
updates per second that can be applied. This is particularly
relevant with Software-defined Networks (SDN) as well as
centralized control planes [15], and has been shown to be
a limitation in a number of existing OpenFlow implemen-
tations [16]. However, our work can help better scale these
approaches, and can be combined with other techniques that
leverage the traffic properties [17].

A more theoretical direction for future research regards the
study of competitive bi-criteria guarantees of the aggregation
trade-offs, and the investigation of how the HIMS scheme
can be improved and generalized. Even in an offline setting,
the design of optimal (approximation) algorithms remains an
open question. While it is easy to see that under certain
circumstances, e.g., when there can be at most one color
change per time unit, the problem is fixed parameter tractable,
i.e., optimal solutions can be computed in time f(↵) · nO(1)

where n denotes the number of prefixes and f is a function
of ↵, it remains an open question whether more general
approximation algorithms exist.

VI. SUMMARY

In this paper we studied the spatial and temporal locality of
routing table updates in the tree-like FIB data structure based
on publicly available BGP traces. We proposed an online FIB
aggregation algorithm, called Locality-aware FIB Aggregation
(LFA), that leverages the locality properties in routing table
updates. We evaluated the ability of LFA to keep the FIB
compressed under the constant stream of BGP routing updates
and showed that it is able to keep most of the FIB compressed

most of the time. We also carried a competitiveness analysis of
online FIB compression algorithms and obtained a non-trivial
approximation ratio, which also holds for the computationally
hard offline problem.

ACKNOWLEDGMENTS

The authors would like to thank Magnús M. Halldórsson
(Reykjavik University) and Anja Feldmann (TU Berlin /
Telekom Innovation Labs) for their valuable feedback on this
work.

REFERENCES

[1] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB Workshop on
Routing and Addressing,” RFC 4984 (Informational), Internet Engineer-
ing Task Force, September 2007.

[2] X. Zhao, Y. Liu, L. Wang, and B. Zhang, “On the aggregatability of
router forwarding tables,” in Proc. of the IEEE INFOCOM, 2010, pp.
848–856.

[3] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “Bgp churn evolution: a
perspective from the core,” IEEE/ACM Trans. on Networking, vol. 20,
no. 2, pp. 571–584, Apr. 2012.

[4] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh,
J. Wang, and P. Francis, “SMALTA: Practical and Near-Optimal FIB
Aggregation,” in Proc. of the ACM CoNEXT, 2011.

[5] Technical Report for INFOCOM submission, “Exploiting local-
ity of churn for FIB aggregation,” in http://www.net.t-labs.tu-
berlin.de/⇠stefan/infocom12fib.pdf, 2012.

[6] J. Li, M. Guidero, Z. Wu, E. Purpus, and T. Ehrenkranz, “BGP routing
dynamics revisited,” SIGCOMM Comput. Commun. Rev., vol. 37, pp.
5–16, 2007.

[7] R. P. Draves, C. King, S. Venkatachary, and B. D. Zill, “Constructing
Optimal IP Routing Tables,” in Proc. of the IEEE INFOCOM, 1999, pp.
88–97.

[8] S. Suri, T. Sandholm, and P. R. Warkhede, “Compressing two-
dimensional routing tables,” Algorithmica, vol. 35, no. 4, pp. 287–300,
2003.

[9] Y. Liu, X. Zhao, K. Nam, L. Wang, and B. Zhang, “Incremental
forwarding table aggregation,” in Proc. of the GLOBECOM, 2010, pp.
1–6.

[10] “University of Oregon Route Views Project,”
http://www.routeviews.org/.

[11] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[12] D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols,
and Architectures. Morgan Kaufmann Publishers Inc., 2007.

[13] C. Kim, M. Caesar, and J. Rexford, “Floodless in seattle: a scalable
ethernet architecture for large enterprises,” in Proc. ACM SIGCOMM,
2008, pp. 3–14.

[14] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
a distributed control platform for large-scale production networks,” in
Proc. of OSDI, 2010.

[15] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a routing control
platform,” in Proc. of NSDI, 2005, pp. 15–28.

[16] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. Moore, “OFLOPS:
An Open Framework for OpenFlow Switch Evaluation,” in Passive and
Active Measurements Conference, 2012.

[17] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang, “Lever-
aging Zipf’s Law for Traffic Offloading,” in ACM SIGCOMM CCR,
2012.


